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Abstract— We derive a single-letter upper bound to the
mismatched-decoding capacity for discrete memoryless channels.
The bound is expressed as the mutual information of a transfor-
mation of the channel, such that a maximum-likelihood decoding
error on the translated channel implies a mismatched-decoding
error in the original channel. In particular, it is shown that if
the rate exceeds the upper-bound, the probability of error tends
to one exponentially when the block-length tends to infinity.
We also show that the underlying optimization problem is a
convex-concave problem and that an efficient iterative algorithm
converges to the optimal solution. In addition, we show that,
unlike achievable rates in the literature, the multiletter version
of the bound cannot not improve. A number of examples are
discussed throughout the paper.

Index Terms— d-decoder, d-capacity, mismatch, shannon
capacity, channel capacity, decoding.

I. INTRODUCTION AND PRELIMINARIES

WE CONSIDER reliable communication over a discrete
memoryless channel (DMC) W with a given decoding

metric [1]–[4] (see also [5] and references therein for an
account of recent progress). This problem arises when the
decoder uses a suboptimal decoding rule due to limited compu-
tational resources, simpler implementation, lack of awareness
of the channel law or imperfect channel estimation. Moreover,
it is shown in [1] that some important problems in information
theory, like the zero-error capacity of a channel can be
cast as instances of the mismatch decoding problem. As a
result, deriving a single letter characterization of the mismatch
decoding capacity would yield a solution to zero-error capacity
problem, known to be a difficult problem.

Multiple achievability results have been reported in
the literature [1]–[4], [6]–[8]. These results were derived
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by random coding techniques, i.e. analyzing the average
probability of error of mismatch decoding over a certain
ensemble of randomly generated codebooks. In some cases,
multiuser achievable rates have been shown to improve over
standard single-user random coding [6]–[8]. As suggested
by [1], multiletter versions of achievable rates can yield strict
improvements over their single-letter counterparts.

Unlike the achievable rate case, few converse results have
been reported in the literature. The only single-letter converse
was reported in [9], where it was claimed that for binary-input
DMCs, the mismatch capacity was precisely equal to the
achievability result derived in [3], [4] known as the LM rate.
Reference [10] provided a counterexample to this converse
invalidating its claim, showing that a multiletter multiuser
rate from [7], [8] was strictly higher than the LM rate.
Multiletter converse results were derived in [11]. In particular,
for DMCs, [11] shows that for rational decoding metrics,
the probability of error cannot decay faster than O(n−1) for
rates above the achievable rate in [3], [4].

In this paper, we propose a single-letter upper bound to the
mismatch capacity that is shown to characterize the mismatch
capacity in special cases where it is known, and yield strict
improvements over the matched capacity in cases where the
mismatch capacity is unknown. The bound is expressed as
the mutual information of an auxiliary channel, such that a
maximum-likelihood decoding error on the auxiliary channel
implies a mismatched-decoding error in the original channel.
The key is to connect the real and auxiliary channels by means
of a graph in the output space. This is a new technique to
derive upper bounds that could also be helpful in other settings.
The bound is shown to be convex-concave and an efficient
algorithm to compute the bound is provided. The convexity
analysis of the bound shows that the multiletter version cannot
improve over its single-letter version.

The paper is structured as follows. In Section II we
introduce notation and preliminaries. In Section III we
introduce our main result and discuss its application to some
examples. Sections IV, V, VI and VII provide the proof of
our main result. In particular, in Section IV, we construct a
graph between different conditional type classes as a key first
step of the proof of our upper bound. In Section V, we relate
the maximum-likelihood decoding errors on a constructed
auxiliary channel V and mismatched decoding errors on
channel W . In Section VI we extend the validity of the
results derived in the previous sections, originally derived for
types, to distributions. Section VII gives the final steps of the
proof. In Section VIII we show that the optimization problem
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implied by our bound is a convex-concave optimization
problem and we derive the corresponding KKT conditions.
Section IX discusses the computation of the bound and proves
the convergence of an efficient iterative algorithm based on
the mirror prox algorithm [12]. In Section X we use the KKT
conditions derived for the single-letter bound and show that
the multiletter version of the bound cannot improve over its
single-letter counterpart.

II. NOTATION AND PRELIMINARIES

We assume input and output alphabets are X =
{1, 2, . . . , J} and Y = {1, 2, . . . , K}, respectively. We denote
the channel transition probability by W (k|j) and define
W ∈ R

J×K as the matrix defined by the channel
W (j, k) = W (k|j). A codebook Cn is defined as a set of
M sequences Cn =

{
x(1), x(2), . . . , x(M)

}
, where x(m) =(

x1(m), x2(m), . . . , xn(m)
)
∈ Xn, for m ∈ {1, 2, . . . , M}.

A message m ∈ {1, 2, . . . , M} is chosen equiprobably and
x(m) is sent over the channel. The channel produces a
noisy observation y = (y1, y2, . . . , yn) ∈ Yn according
to Wn(y|x) =

∏n
i=1 W (yi|xi). Upon observing y ∈ Yn

the decoder produces an estimate of the transmitted message
m̂ ∈ {1, 2, . . . , M}. The average and maximal error probabil-
ities are respectively defined as

Pe(Cn) =
1
M

M∑
i=1

P[m̂ �= m|m = i] (1)

and
Pe,max(Cn) = max

i∈{1,2,...,M}
P[m̂ �= m|m = i]. (2)

Rate R > 0 is said to be achievable if for any � > 0 there
exists a sequence of length-n codebooks {Cn}∞n=1 such that
|Cn| ≥ 2n(R−ε), and lim infn→∞ Pe(Cn) = 0. The capacity
of W , denoted by C(W ) or C(W ), is defined as the largest
achievable rate.

The decoder that minimizes the error probability is the
maximum-likelihood (ML) decoder, that produces the message
estimate m̂ according to

m̂ = argmax
i∈{1,2,...,M}

Wn
(
y|x(i)

)
. (3)

In certain situations, where the decoder is unaware of the
channel law, or is unable to compute it, it is not possible to use
ML decoding and instead, the decoder produces the message
estimate m̂ as

m̂ = argmax
i∈{1,2,...,M}

q
(
x(i), y

)
, (4)

where,

q
(
x(i), y

)
=

n∑
�=1

q
(
x�(i), y�

)
(5)

and q : X × Y → R is the decoding metric1. We assume
that, without loss of generality, decoding ties are counted

1In the literature, q(x, y) has been used to denote either an additive or
multiplicative decoding metric. For convenience, we have chosen it to denote
an additive metric.

as errors. We will refer to this decoder as q-decoder. When
q(x, y) = log W (y|x), the decoder is ML, otherwise, for
a general decoding metric q the decoder is said to be
mismatched [1]–[4]. We define the metric matrix Q ∈ R

J×K

with entries Q(j, k) = q(j, k). The average and maximal error
probabilities of codebook Cn under q-decoding are respec-
tively denoted by P q

e (Cn) and P q
e,max(Cn). The mismatch

capacity Cq(W ) or Cq(W ) is defined as supremum of all
achievable rates with q-decoding.

Lower bounds for the mismatch capacity have been stud-
ied extensively using random coding techniques. Specifically,
the i.i.d. random coding ensemble is known to achieve the
generalized mutual information (GMI) which can be written
as [13],

RGMI
q (W ) = max

PX

min
V :

EPX×V [q(X,Y )]≥EPX×W [q(X,Y )]

I(PX , V ),

(6)

where the notation PX × PY |X denotes the joint distribu-
tion induced by the corresponding marginal and conditional
distributions. An improved lower bound, known as the LM
rate, is derived by employing constant composition random
coding [3], [4],

RLM
q (W ) = max

PX

min
V :

PXV =PXW
EPX×V [q(X,Y )]≥EPX×W [q(X,Y )]

I(PX , V ),

(7)

where the notation PXPY |X denotes the output distribution
induced by the marginal distribution PX and conditional
distribution PY |X . The above rate has an intuitive explanation.
The maximization is over all input distributions, and the
minimizations is over all auxiliary channels V with two
properties. First, equal output marginal PXV = PXW , such
that for all k ∈ Y∑

j∈X
PX(j)V (k|j) =

∑
j∈X

PX(j)W (k|j). (8)

This implies that the distribution of the received sequence
needs to be the same for both channel W and auxiliary
channel V whenever the input codeword is chosen from
composition PX . The second condition, also present in the
expression of the GMI, EPX×V [q(X, Y )] ≥ EPX×W [q(X, Y )]
can be rewritten as,∑

j,k

PX(j)V (k|j)q(j, k) ≥
∑
j,k

PX(j)W (k|j)q(j, k), (9)

and implies that, the received sequence Y has a higher metric
under channel V than under channel W , and therefore, the
q-decoder makes an error. It is implied in (6) and (7) that
RGMI

q (W ) ≤ RLM
q (W ). The GMI and LM rates are ensemble

tight, i.e. the ensemble average error probability tends to one
exponentially for rates exceeding the GMI and LM rates,
respectively. Both of the bounds above are known not to attain
the mismatch capacity in general. It is known that the GMI
and LM rates can be improved by considering their multiletter
counterparts [1].
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The method of types [14, Ch. 2] will be used extensively
in this paper. We recall some of the basic definitions and
introduce some notation. The type of a sequence x =
(x1, x2, . . . , xn) ∈ Xn is the empirical distribution of its
symbols, i.e., p̂x(j) = 1

n

∑n
i=1 1{xi = j}. The set of all

types of Xn is denoted by Pn(X ). For pX ∈ Pn(X ), the type
class T n(pX) is set of all sequences in Xn with type pX ,
T n(pX) = {x ∈ Xn | p̂x = pX}.

The joint type of sequences x = (x1, x2, . . . , xn) ∈ Xn

and y = (y1, y2, . . . , yn) ∈ Yn is the empirical distribution
p̂xy(j, k) = 1

n

∑n
i=1 1{xi = j, yi = k}. The conditional type

of y given x is the empirical conditional distribution

p̂y|x(k|j) =

{
p̂xy(j,k)

p̂x(j) p̂x(j) > 0
1
K otherwise.

(10)

The set of all conditional types on Yn given Xn is
denoted by Pn(Y|X ). For pY |X ∈ Pn(Y|X ) and a sequence
x ∈ T n(pX), the conditional type class T n

x (pY |X) is defined
as T n

x (pY |X) = {y ∈ Yn | p̂y|x = pY |X}.
Similarly, we can define the joint type of x, y, ŷ, as the

empirical distribution of the triplet. For j ∈ X and k1, k2 ∈ Y ,

p̂xyŷ(j, k1, k2) =
1
n

n∑
i=1

1{xi = j, yi = k1, ŷi = k2}. (11)

We define the joint conditional type of y, ŷ given x ∈ T n(pX)
as

p̂yŷ|x(k1, k2|j) =

{
p̂xyŷ(k1,k2|j)

p̂x(j) p̂x(j) > 0
1
K1{k1 = k2} otherwise.

(12)

The set of all joint conditional types is denoted by Pn(Y ×
Ŷ|X ). Additionally, for pY Ŷ |X ∈ Pn(Y × Ŷ|X ) we define:

T n
yx(pY Ŷ |X) = {ŷ ∈ Yn | p̂yŷ|x = pY Ŷ |X}. (13)

The mutual information is defined as I(PX , PY |X) Δ=
E

[
log PY |X (Y |X)�

x′ PX (x′)PY |X(Y |x′)

]
. Throughout the paper, for con-

ditional types or conditional distributions M1, M2 we define

|M 1 − M2|∞ = max
1≤j≤J
1≤k≤K

∣∣M1(k|j) − M2(k|j)
∣∣. (14)

Definition 1: Let PY Ŷ |X be a joint conditional distribution
and define the set

Sq(k1, k2)
Δ=

{
i ∈ X|i = arg max

i′∈X
q(i�, k2)−q(i�, k1)

}
. (15)

We say that PY Ŷ |X is a maximal joint conditional distribution
if for all (j, k1, k2) ∈ X × Y × Y ,

PY Ŷ |X(k1, k2|j) = 0 if j /∈ Sq(k1, k2). (16)

Moreover, if pY Ŷ |X ∈ Pn(Y × Ŷ|X ) satisfies the same
condition, we call it a maximal joint conditional type.

For a given decoding metric q, we define the set of maximal
joint conditional distributions to be Mmax(q).

Appendix C discusses the above definition for cases where
the decoding metric q can take −∞ values.

The above definition will become helpful when relating
decoding errors in channel PY |X = W under q-decoding to
errors in channel PŶ |X under ML decoding.

Definition 2: Let Cn = {x(1), . . . , x(M)} and m be the
transmitted message. We say that the decoder makes a type
conflict error for a given y ∈ Yn if there is at least one
codeword x(i) �= x(m) such that p̂y|x(i) = p̂y|x(m).

If there is a type conflict error, every decoder that makes a
decision based on the joint type between the channel output
and the candidate codewords (α-decoder) makes an error,
including ML and q-decoding; the converse is not true. With
the same method developed in the paper, it can be shown that
the type conflict error probability over the channel W goes to
1 exponentially for R > C(W ); even with a genie-aided ML
decoder knowing the exact conditional type p̂y|x(m), the error
probability would still tend to 1 exponentially above capacity.

III. MAIN RESULT

In this section, we introduce the main result and discuss
some of its properties. Our bound is derived for the maximal
probability of error. Recall that for the mismatched decoding
problem, a converse for the maximal probability of error
implies a converse for the average probability of error [1].

Theorem 1: Let W, q be channel and decoding metric,
respectively. We define R̄q(W ) as follows,

R̄q(W ) = max
PX

min
PY Ŷ |X∈Mmax(q)

PY |X=W

I(PX , PŶ |X). (17)

If R > R̄q(W ), ∃n0 ∈ N and Ēq(R) > 0 such that for n >
n0, the error probability of any codebook Cn of length n and
M ≥ 2nR codewords satisfies P q

e,max(Cn) ≥ 1 − 2−nĒq(R).
Proof Outline: The main idea behind the proof of Theorem 1

is that of lower-bounding the error probability of a codebook
Cn with q-decoding over the channel W by that of the same
codebook over a different channel V with ML decoding,
with V = PŶ |X as per the theorem statement. The proof is
developed over the next sections of the paper. The following
is an overview of the structure of the proof and the sections
covering the proof.

• In Section IV we construct a graph G in the output space
such that if ML decoding over V makes a type conflict
error for some y ∈ Yn, then, the q-decoder makes an
error for some ŷ ∈ Yn connected to y in G.

• In Section V we prove a theorem that relates the
maximum-likelihood decoding errors on a constructed
auxiliary channel V and mismatched decoding errors on
channel W via the graph constructed in Section IV.

• In Sections VI and VII we generalize the results we
have derived using the method of types in the previous
sections to distributions. We do this by taking the limit
when n tends to infinity and complete the proof of the
Theorem 1. �

Theorem 1 implies that Cq(W ) ≤ R̄q(W ). It is implied
in Theorem 1 that for any PY Ŷ |X ∈ Mmax(q) such that
PY |X = W ,

R̄q(W ) ≤ C(PŶ |X). (18)
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This result is derived by using the max-min inequality:

R̄q(W ) = max
PX

min
PY Ŷ |X∈Mmax(q)

PY |X=W

I(PX , PŶ |X) (19)

≤ min
PY Ŷ |X∈Mmax(q)

PY |X=W

max
PX

I(PX , PŶ |X) (20)

= min
PY Ŷ |X∈Mmax(q)

PY |X=W

C(PŶ |X). (21)

As it will be shown in Section VIII, Eq. (20) actually
holds with equality. Moreover, Theorem 1 characterizes a
family of bounds to the mismatch capacity, not only the
minimum in (17). The above inequality is helpful to construct
bounds without necessarily performing the optimization. As an
instance of the above result, setting Y such that PY |X = W

and Ŷ = Y makes PY Y |X a maximal joint conditional dis-
tribution (Def. 1). Therefore, Cq(W ) ≤ C(PY |X) = C(W ).
In the proof it is evident that the bound remains valid for
any fixed input distribution, not only the maximizing one.
This means that any constant-composition codebook with type
approaching a fixed PX will have an error probability that
tends to one exponentially if its rate is such that

R > min
PY Ŷ |X∈Mmax(q)

PY |X=W

I(PX , PŶ |X). (22)

Remark 1: The optimization (17) in Theorem 1, is a
convex-concave optimization problem. See Section VIII for
further details.

Remark 2: It was shown [1] that the achievability bounds
for DMCs could be improved by considering an equivalent
metric q̃(x, y) = sq(x, y) + a(x) + b(y). Here we show that
our bound in Theorem 1 does not change by replacing metric
q(x, y) by q̃(x, y) = sq(x, y)+ a(x)+ b(y). According to the
definition of Sq̃(k1, k2), we have

argmax
j∈X

q̃(j, k2) − q̃(j, k1)

= argmax
j∈X

(
sq(j, k2) + a(j) + b(k2))

− (sq(j, k1) + a(j) + b(k1)
)

(23)

= argmax
j∈X

s
(
q(j, k2) − q(j, k1)

)
+ b(k2) − b(k1) (24)

= argmax
j∈X

q(j, k2) − q(j, k1) (25)

which is precisely the condition in the definition of Sq(k1, k2).
The above property from [1] implies that for binary-input

channels, the mismatch capacity Cq(W ) is only a function of
the metric differences q(1, y)−q(2, y) for every y ∈ Y . In the
remainder of this section, we show a sufficient condition for
Cq(W ) < C(W ) for binary-input channels based on the above
observation.

Definition 3: We say that two sequences {αi}K
i=1 and

{βi}K
i=1 have the same order if for all 1 ≤ i1, i2 ≤ K

αi1 ≥ αi2 ⇒ βi1 ≥ βi2 . (26)

We have the following result for J = 2.
Theorem 2: Assume that W (k|j) > 0, for all j = 1, 2, k =

1, . . . , K . If the sequences
{

log W (k|1) − log W (k|2)
}K

k=1

TABLE I

JOINT CONDITIONAL DISTRIBUTION PY Ŷ |X FOR EXAMPLE 1

and
{
q(1, k) − q(2, k)

}K

k=1
do not have the same order, then

Cq(W ) < C(W ).
Proof: See Appendix A for the proof.

A. Examples

In the following, we discuss the applicability of our upper
bound to two relevant cases. First, we show that our bound
recovers known results on binary-input binary-output channels.
Next, we show that our bound makes a non-trivial improve-
ment over the channel-metric combination used in [10] to state
the counterexample to Balakirsky’s result [9].

Example 1 (Binary-Input Binary-Output Channels): Sup-
pose that the channel and decoding metric matrices of
binary-input binary-output channels are given by

W =
[
a b
c d

]
and Q =

[
â b̂

ĉ d̂

]
. (27)

Without loss of generality we assume a+d ≥ b+ c. We show
the following known result [1]: if â + d̂ < b̂ + ĉ then
R̄q(W ) = 0. On the other hand, if â + d̂ ≥ b̂ + ĉ, then
R̄q(W ) = C(W ).

Case 1: â + d̂ < b̂ + ĉ
We chose the joint conditional distribution in Table I.
It can be checked that indeed it is a valid joint conditional

distribution for 0 ≤ r1 ≤ a and 0 ≤ r2 ≤ d, and that∑
k2

PY Ŷ |X(k1, k2|j) = PY |X(k1|j) = W (k1|j). In order
to check its maximality, we first notice that for k1 = k2

we always have that q(i, k2) − q(i, k1) = 0 for all i ∈ X ,
implying that Sq(k1, k2) = {1, 2}. Thus, since every j ∈ X
is such that j ∈ Sq(k1, k2), the corresponding four entries
can be nonzero. As for entry (1, 1, 2) (resp. (2, 2, 1)), using
the assumption â + d̂ < b̂ + ĉ we have that Sq(k1, k2) =
{1} (resp. Sq(k1, k2) = {2}), and thus they both can be
nonzero. Since by assumption â + d̂ < b̂ + ĉ, it can be
checked that for entry (2, 1, 2), Sq(k1, k2) = {1}, and thus we
must have PY Ŷ |X(k1, k2|j) = 0. Similarly for entry (1, 2, 1),
Sq(k1, k2) = {2}. Marginalizing the above over Y gives

PŶ |X =
[
a − r1 b + r1

c + r2 d − r2

]
. (28)

Without loss of generality assume that a is the largest element
of W . By setting r1 = r2 = a−c

2 = d−b
2 we obtain

PŶ |X =
[

a+c
2

b+d
2

a+c
2

b+d
2

]
. (29)

Since C(PŶ |X) = 0, we have that Cq(W ) ≤ 0.

Case 2: â + d̂ ≥ b̂ + ĉ
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TABLE II

NONZERO ENTRIES OF PY Ŷ |X FOR EXAMPLE 2

In [4] it is shown that the LM achievable rate is equal to
C(W ). Therefore, our upper-bound also matches the achiev-
able rate.

Example 2: We consider the channel and metric studied
in [10] to show a counterexample to [9]

W =
[
0.97 0.03 0
0.1 0.1 0.8

]
and Q =

[
1 1 1
1 0.5 1.36

]
. (30)

In this case, the LM rate is RLM
q (W ) = 0.1975 while the

rate achieved by a multiletter extension of order � = 2 of
superposition coding gives R

SC,(2)
q (W ) = 0.1991 [10].

We choose the maximal PY Ŷ |X in Table II such that
PY |X = W , which happens to be the optimal one (see
Section IX for details). By marginalizing over Y we find that

PŶ |X =
[
0.5 0.5 0
0.1 0.1 0.8

]
. (31)

We obtain that R̄q(W ) = 0.6182 bits/use, while the capacity
is C(W ) = 0.7133 bits/use.

In the above example, if we change q(2, 2) from 0.5 to 1,
the same PY Ŷ |X in Table II remains maximal (and optimal)
and gives R̄q(W ) = 0.6182 bits/use, matching the LM
rate [4].

Example 3: In this example we apply our bound to the
erasures-only or zero-undetected error capacity problem.
In this setting, the decoder chooses a codeword x in the code-
book if it is the only codeword with W (y|x) > 0. Otherwise
the decoder declares an erasure. The erasures-only capacity
Ceo(W ) is defined as the maximum achievable rate where
the probability of erasure could tend to zero by increasing
the block-length. It can be shown [1] that the erasures-only
capacity problem can be reduced to a mismatched decoding
problem with decoding metric

q(x, y) =

{
0 W (y|x) > 0
−1 W (y|x) = 0.

(32)

In order to explain the structure of the of the sets Sq(k1, k2),
observe that for any two k1, k2 ∈ Y , there are two different
possibilities:

1) Firstly, if there exists j ∈ X such that, W (k1|j) =
0 and W (k2|j) > 0 then from the definition of the
metric in (32) we get j ∈ Sq(k1, k2). Moreover, for any
other j� ∈ Sq(k1, k2) we should have W (k1|j�) = 0
and W (k2|j�) > 0. Thus, for any j� ∈ Sq(k1, k2)
from the definition of maximality PY Ŷ |X(k1, k2|j) could
potentially be non-zero. Yet, since PY Ŷ |X(k1, k2|j�) ≤
W (k1|j�), we have that PY Ŷ |X(k1, k2|j�) = 0.

2) Instead, if there is no j ∈ X such that W (k1|j) = 0 and
W (k2|j) > 0, then

{j ∈ X|W (k2|j) > 0} ⊆ {j ∈ X|W (k1|j) > 0}. (33)

If {j ∈ X|W (k1|j) > 0} = {j ∈ X|W (k2|j) > 0},
then, outputs k1 and k2 can be merged without affecting
Ceo(W ) [15]. Otherwise, outputs k1 and k2 cannot be
merged.

Consider the following ternary-input quaternary-output
channel that cannot be simplified by merging,

W =

⎡⎣0.25 0 0.05 0.7
0.3 0.55 0 0.15
0.05 0.5 0.45 0

⎤⎦ . (34)

The Shannon capacity of W is C(W ) = 0.7854 bits/use and
our upper bound gives R̄q(W ) = 0.6232 bits/use. The LM rate
computed by an exhaustive search over the input distributions
is RLM

q (W ) = 0.4292 bits/use.
As observed from the above examples, our bound

non-trivially improves on the on the trivial upper bound stating
that the mismatch capacity is at most the Shannon capacity.

IV. GRAPH CONSTRUCTION

In this section, we outline how to construct a graph between
two different conditional types obtained from a joint condi-
tional type.

Definition 4: Let G = {V1,V2, E} be a regular bipartite
graph with vertex sets V1 and V2, edge set E and degrees r1

on vertex set V1 and r2 on vertex set V2. For B ⊂ V2 we
define the set of vertices in V1 connected to B as

Ψ21(B) =
{
v ∈ V1 | ∃b ∈ B; (b, v) ∈ E

}
. (35)

Analogously for B ⊂ V1, the set Ψ12(B) is defined similar
to (35).

Lemma 1: Suppose G = {V1,V2, E} is a regular bipartite
graph with degrees r1 > 0, r2 > 0. Then, for any B ⊂ V2 we
have that

|Ψ21(B)|
|V1|

≥ |B|
|V2|

. (36)

Proof: Let B ⊂ V2 and consider Ψ21(B). There are
exactly r2|B| edges between B and Ψ21(B). Since each vertex
in Ψ21(B) is connected to at most r1 vertices of B we have

r2|B| ≤ r1|Ψ21(B)| (37)

which implies that
r2

r1
|B| ≤ |Ψ21(B)|. (38)

Since there are exactly r1|V1| = r2|V2| edges in the graph,
the result follows by substituting r2

r1
= |V1|

|V2| in (38).
Our aim is to construct a graph between different two

conditional type classes, in order to be able to relate type
conflict errors of codebook Cn over the channel V and
errors of Cn over the channel W under q-decoding. Suppose
pY Ŷ |X ∈ Pn(Y × Ŷ|X ) is an arbitrary joint conditional type.
We construct a graph between T n

x (pY |X) and T n
x (pŶ |X),

the corresponding conditional type classes.
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Definition 5: The graph

Gx(pY Ŷ |X) =
{
T n

x (pY |X), T n
x (pŶ |X), E

}
(39)

has the following edge set:

E =
{
(y, ŷ) | p̂yŷ|x = pY Ŷ |X

}
. (40)

Lemma 2: The graph Gx(pY Ŷ |X) is regular, i.e. all
sequences in each conditional type class T n

x (pY |X) and
T n

x (pŶ |X) have the same degree.
Proof: For a given x ∈ T n(pX), |T n

x (pY |X)| is inde-
pendent of the chosen x ∈ T n(pX), but dependent on pX .
Similarly, for a given y ∈ T n

x (pY |X), |T n
yx(pY Ŷ |X)| is

independent of the chosen x, y, but dependent on the joint
type pXY . Therefore, the total number of edges that are con-
nected to any given y ∈ T n

x (pY |X) is equal to |T n
yx(pY Ŷ |X)|

(see (13)). This proves the left-regularity, i.e., for vertex set
T n

x (pY |X). The same argument holds for ŷ ∈ T n
x (pŶ |X) and

therefore the graph is regular.
As we show next, the combination of Lemmas 1 and 2

will prove to be helpful. Assume for a codeword x we find
a set B ⊂ T n

x (pŶ |X) that yields a type conflict error (see
Definition 2). Then, the probability of an element ŷ ∈ B being
the output of an arbitrary channel V given that the conditional
type is pŶ |X , is given by

P
[
ŷ ∈ B | ŷ ∈ T n

x (pŶ |X), x is sent
]

=
|B|

|T n
x (pŶ |X)| (41)

where the probability is computed with respect to an auxiliary
memoryless channel V , i.e., P

[
ŷ|x is sent

]
=

∏
i=1 V (ŷi|xi)

and equality holds because all elements of T n
x (pŶ |X) are

equally likely to appear at the output when x is sent. The
probability in (41) should be understood as the probability of
the set B given that ŷ ∈ T n

x (pŶ |X) and x is sent. Therefore,
if the graph Gx(pY Ŷ |X) is connecting ŷ causing a type conflict
error to y causing a q-decoder error, by Lemma 1 we show
that the set Ψ21(B) ⊂ T n

x (pY |X) satisfies

|Ψ21(B)|
|T n

x (pY |X)| ≥
|B|

|T n
x (pŶ |X)| . (42)

Using the same argument as in (41) we have

P
[
y ∈ Ψ21(B) |y ∈ T n

x (pY |X), x is sent
]

=
|Ψ21(B)|

|T n
x (pY |X)| .

(43)

Combining (43) and (42) we get

P[y ∈ Ψ21(B) |y ∈T n
x (pY |X), x is sent] ≥

P[ŷ ∈ B | ŷ ∈ T n
x (pŶ |X), x is sent].

(44)

As a result, we get a lower bound on the probability of error
of the q-decoder in channel W as a function of type conflict
errors in channel V . In the next section, we prove that a graph
constructed based on a maximal joint conditional type has the
property of connecting type conflict errors to q-decoder errors.

V. CONNECTING q-DECODING ERRORS AND

TYPE CONFLICT ERRORS

We next introduce a property of maximal joint conditional
types and use it to relate type conflict and q-decoding errors.

Lemma 3: Let pX ∈ Pn(X ), x, x̂ ∈ T n(pX), and pY Ŷ |X
be a maximal joint conditional type. If ŷ ∈ T n

x (pŶ |X) ∩
T n

x̂ (pŶ |X) is connected to y ∈ T n
x (pY |X) in Gx(pY Ŷ |X)

then,

q(x, y) ≤ q(x̂, y). (45)

Proof: From the definition of type, for any x̄ ∈ Xn,

p̂yŷ(k1, k2) =
∑

j

p̂x̄yŷ(j, k1, k2). (46)

We use the above equation once by setting x̄ = x and once
by setting x̄ = x̂. Therefore, we have∑

j

p̂xyŷ(j, k1, k2) =
∑

j

p̂x̂yŷ(j, k1, k2). (47)

We continue by bounding q(x̂, ŷ) − q(x̂, y) as

q(x̂, ŷ) − q(x̂, y)

= n
∑

j,k1,k2

p̂x̂yŷ(j, k1, k2)
(
q(j, k2) − q(j, k1)

)
(48)

≤ n
∑
k1,k2

(∑
j

p̂x̂yŷ(j, k1, k2)
)

max
j′

(
q(j�, k2) − q(j�, k1)

)
(49)

= n
∑
k1,k2

(∑
j

p̂xyŷ(j, k1, k2)
)

max
j′

(
q(j�, k2) − q(j�, k1)

)
(50)

= n
∑
k1,k2

∑
j

p̂xyŷ(j, k1, k2)
(
q(j, k2) − q(j, k1)

)
(51)

= q(x, ŷ) − q(x, y) (52)

where (48) follows from the definition of metric and type,
since for a joint type p̂xy we have that q(x, y) =
n
∑

j,k p̂xy(j, k)q(j, k), (49) follows from upper-bounding
(q(j, k2) − q(j, k1)) by maxj(q(j, k2) − q(j, k1)), (50) fol-
lows from (47), (51) follows from the maximality of pY Ŷ |X
(see Definition (1)) and the graph construction Gx(pY Ŷ |X)
(see Definition (5)) and (52) follows again from the metric
definition.

Using the fact that ŷ ∈ T n
x (pŶ |X) ∩ T n

x̂ (pŶ |X) and since
the types of x and x̂ are the same, we get a type conflict
error, i.e., p̂ŷ|x = p̂ŷ|x̂. Thus, q(x, ŷ) = q(x̂, ŷ). Finally,
combining with (52) we get the desired result q(x, y) ≤
q(x̂, y), i.e., a q-decoding error. See Appendix C for the case
where the decoding metric q takes −∞ values.

The above lemma states that if ŷ ∈ T n
x (pŶ |X)∩T n

x̂ (pŶ |X)
and if x, x̂ ∈ Cn, by observing ŷ when x is sent, there will
be a type conflict error. Moreover, if such a ŷ is connected to
y in Gx(pY Ŷ |X), then, based on (45), by observing y when
x is sent, the q-decoder makes an error.

Definition 6: Let W be a channel and pX ∈ Pn(X ) an
input type. We define the channel type neighborhood as the
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set of conditional types that are close to W ,

Nε,pX
(W ) =

{
pY |X ∈ Pn(Y|X ) | ∀j, k if pX(j) > 0,

|W (k|j) − pY |X(k|j)| ≤ �
}
. (53)

The previous result showed that if pY Ŷ |X is a maximal
joint conditional type, then type conflict errors in T n

x (pŶ |X)
can be related to q-decoding errors in T n

x (pY |X). Assume
PY Ŷ |X is a maximal joint conditional distribution such that
PY |X = W and PŶ |X = V . The lemma below shows that for
every empirical conditional type W close to the channel W
there exists a maximal joint conditional type, that can be used
to relate type conflict errors of a type close to V to q-decoder
errors over W .

Lemma 4: Let pX ∈ Pn(X ) be an input type and pmin
Δ=

minj,pX (j)>0 pX(j). Assume PY Ŷ |X is a maximal joint con-
ditional distribution such that PY |X = W and PŶ |X = V .
Moreover, let � ≥ 2K

npmin
. Then, for each W ∈ N ε

2 ,pX
(W ),

we can find a maximal joint conditional type p̄Y Ŷ |X such that
p̄Y |X = W and p̄Ŷ |X ∈ N2Kε,pX

(V ).
Proof: If � > 1 then there is nothing to prove. Therefore,

we consider � < 1, For j ∈ X and k1, k2 ∈ Y , choose
pY Ŷ |X(k1, k2|j) to be either

pY Ŷ |X(k1, k2|j) =

⌊
npX(j)PY Ŷ |X(k1, k2|j)

⌋
npX(j)

(54)

or

pY Ŷ |X(k1, k2|j) =

⌈
npX(j)PY Ŷ |X(k1, k2|j)

⌉
npX(j)

(55)

such that for every j ∈ X we have∑
k1,k2

pY Ŷ |X(k1, k2|j) = 1. (56)

Such a choice is possible since∑
k1,k2

PY Ŷ |X(k1, k2|j) = 1. (57)

Moreover, when pX(j) = 0 define pY Ŷ |X(k1, k2|j) as
in (12). The above choice implies that for every j ∈ X such
that pX(j) > 0 and any k1, k2 ∈ Y ,∣∣pY Ŷ |X(k1, k2|j) − PY Ŷ |X(k1, k2|j)

∣∣ ≤ 1
npX(j)

(58)

≤ 1
npmin

. (59)

Moreover, based on (54) and (55) pY Ŷ |X is maximal, since
pY Ŷ |X(k1, k2|j) is non-zero either when k1 = k2 or for the
same entries that PY Ŷ |X is non-zero. As a result of (59) for
every j ∈ X such that pX(j) > 0 we have that∣∣∣∑

k2

(
pY Ŷ |X(k1, k2|j) − PY Ŷ |X(k1, k2|j)

)∣∣∣
≤

∑
k2

∣∣pY Ŷ |X(k1, k2|j) − PY Ŷ |X(k1, k2|j)
∣∣ (60)

≤ K

npmin

(61)

and thus,

pY |X ∈ N K
npmin

,pX
(W ) (62)

pŶ |X ∈ N K
npmin

,pX
(V ). (63)

For any W ∈ N ε
2 ,pX

(W ), for every j ∈ X such that
pX(j) > 0 and k ∈ Y by definition we know that |W (k|j)−
pY |X(k|j)| ≤ �, since∣∣W (k|j) − pY |X(k|j)

∣∣ ≤ ∣∣W (k|j) − W (k|j)
∣∣

+
∣∣W (k|j) − pY |X(k|j)

∣∣ (64)

≤ �

2
+

�

2
(65)

= �. (66)

where (65) follows from (62) and (63). Construct p̄Y Ŷ |X
from pY Ŷ |X in the following way. For any j, k1 ∈ X ×
Y such that pX(j) > 0, if W (k1|j) − pY |X(k1|j) >
0 add non-negative real numbers less than or equal � to
pY Ŷ |X(k1, k2|j), k2 = 1, 2, . . . , K to obtain p̄Y Ŷ |X with the
following property,∑

k2

p̄Y Ŷ |X(k1, k2|j) = W (k1|j). (67)

We can do this because |W (k1|j) − pY |X(k1|j)| ≤ �. Note
that by construction of this step all entries of p̄Y Ŷ |X so far
are non-negative.

We can do the same if W (k1|j) − pY |X(k1|j) ≤ 0 with
non-positive real numbers not less than −� such that∑

k2

p̄Y Ŷ |X(k1, k2|j) = W (k1|j). (68)

Observe that from W (k1|j) − pY |X(k1|j) ≤ 0 and
|W (k1|j)−pY |X(k1|j)| ≤ � we obtain that −� ≤ W (k1|j)−
pY |X(k1|j) ≤ 0. For the above step, we can perform the
addition of non-negative numbers in a way that makes all the
entries of p̄Y Ŷ |X non-negative. This is true since we know∑

k2
pY Ŷ |X(k1, k2|j) = pY |X(k1|j) and −� ≤ W (k1|j) −

pY |X(k1|j) ≤ 0. Then marginalizing over Ŷ we get p̄Ŷ |X
satisfying the following

|p̄Ŷ |X(k2|j) − pŶ |X(k2|j)|

=
∣∣∣∑

k1

p̄Y Ŷ |X(k1, k2|j) − pY Ŷ |X(k1, k2|j)
∣∣∣ (69)

≤
∑
k1

|p̄Y Ŷ |X(k1, k2|j) − pY Ŷ |X(k1, k2|j)| (70)

≤
∑
k1

� (71)

= K�. (72)

Therefore by the triangle inequality and (63) we get
|p̄Ŷ |X(k2|j) − V (k2|j)| ≤ 2K�.

In the next theorem, we show that if PY Ŷ |X is a maximal
joint conditional distribution and M is large enough, then we
will find many type conflict errors over conditional types close
to V = PŶ |X . These are then linked to q-decoding errors over
the channel W = PY |X .
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Theorem 3: Let Cn be a codebook with M codewords
and composition pX with pmin

Δ= minj,pX (j)>0 pX(j). Let
PY Ŷ |X be a maximal joint conditional distribution such that
PY |X = W, PŶ |X = V . Let � ≥ 2K

npmin
and suppose

N2Kε,pX
(V ) = {V 1, V 2 . . . , V t}. Let qi be the output type

corresponding to input type pX and conditional type V i. If for
some integer a ≥ 2, for every x ∈ T n(pX) and for all
i ∈ {1, . . . , t} we have that

M |T n
x (V i)| ≥ a2(n + 1)2J(K−1) max

1≤i′≤t
|T n(qi′)|, (73)

then, there exists a codeword x(m) ∈ Cn such that

P

[
m̂ �= m

∣∣ p̂y|x(m) ∈ N ε
2 ,pX

(W ),x(m) is sent
]

> 1 − 2
a + 1

. (74)

The above theorem gives us a sphere-packing type of
bound. From the method of types we know that |T n

x (V i)| .=
2nH(V i|pX ) ≈ 2nH(V |pX ) and that |T n(qi)| .= 2nH(qi) ≈
2nH(q), where q denotes the output distribution induced by
input type pX and channel V . The approximation comes from
the definition and properties of the neighborhood introduced
in Definition 6 (see Section VII for more details). Therefore,
inequality (73) roughly implies that

2nR2nH(V |pX) � 2nH(q), (75)

or equivalently, R � I(pX , V ). The theorem states that if
R � I(pX , V ), the error probability of one of the messages
is high under q-decoding.

Proof: The proof is divided into the following four parts:
1) The existence of a codeword x(m) ∈ Cn that yields a

type conflict error with many other codewords for many
output sequences

2) An error probability lower bound for the above codeword
x(m) ∈ Cn based on Lemma 3

3) An overall error probability lower bound when the chan-
nel type is W ∈ N ε

2 ,pX
(W )

4) An overall error probability lower bound for all channel
types in the neighborhood N ε

2 ,pX
(W )

Part 1
The first step is to show that there is a codeword x(m) ∈ Cn

such that for all 1 ≤ i ≤ t a large proportion of sequences in
T n

x(m)(V
i) have the same conditional type V i with at least a

other codewords in Cn, yielding a type conflict error with these
a codewords. More precisely, we wish to show that there is
a codeword x(m) ∈ Cn and a family of sets F =

{
Bi | Bi ⊂

T n
x(m)(V

i), i = 1, 2, . . . , t
}

such that

1) |Bi| ≥ a−1
a |T n

x(m)(V
i)|

2) ∀ŷ ∈ Bi there are a other codewords
x�(1), x�(2), ..., x�(a) ∈ Cn for which p̂ŷ|x′(1) =
. . . = p̂ŷ|x′(a) = p̂ŷ|x(m) = V i.

This implies that we can find a family of sets F = {Bi}
where Bi ⊂ T n

x(m)(V
i), such that all members of Bi for 1 ≤

i ≤ t cause type conflict errors with other a codewords.
We prove this result by contradiction. Suppose there is no

such x(m) with such family F = {Bi}. Then, there is no
x ∈ Cn, such that a family F = {Bi} with the above properties

exists. Therefore, for any x ∈ Cn there is a set Ax with the
following properties:

1) Ax ⊂ T n
x (V i) for some 1 ≤ i ≤ t,

2) |Ax| > 1
a |T n

x (V i)| for the same i in condition 1 above,
3) ∀ŷ ∈ Ax there are at most a − 1 other codewords

x�(1), x�(2), ..., x�(a−1) ∈ Cn such that p̂ŷ|x′(1) = . . . =
p̂ŷ|x′(a−1) = p̂ŷ|x.

There are at most (n + 1)J(K−1) conditional types pY |X
such that pY = qi, and thus, t ≤ (n + 1)J(K−1). We claim
that every ŷ ∈ T n(qi), for any 1 ≤ i ≤ t is a member of at
most a(n + 1)J(K−1) sets Ax. In order to show this, assume
that some ŷ violates this claim and is a member of more than
a(n + 1)J(K−1) sets Ax. Then, by the pigeonhole principle,

there are at least
⌈

a(n+1)J(K−1)+1
(n+1)J(K−1)

⌉
= a + 1 sets Ax̄(1) ⊂

T n
x̄(1)(V

i1), . . . ,Ax̄(a+1) ⊂ T n
x̄(a+1)(V

i1) corresponding to
codewords x̄(1), . . . , x̄(a + 1) ∈ Cn for the same 1 ≤ i1 ≤ t.
In the above argument pigeons are the sets Ax that contain ŷ
and pigeonholes are the indices 1 ≤ i ≤ t of T n

x (V i) such that
that Ax ⊂ T n

x (V i). Therefore, since, ŷ ∈ Ax̄(1)∩Ax̄(2) · · ·∩
Ax̄(a+1), we have that

p̂ŷ|x̄(1) = p̂ŷ|x̄(2) = · · · = p̂ŷ|x̄(a+1) = V i1 (76)

which contradicts the third condition that the sets Ax must
satisfy. Therefore, the claim that every ŷ ∈ T n(qi), for any
1 ≤ i ≤ t is a member of at most a(n + 1)J(K−1) sets Ax is
verified. Furthermore, considering the fact that Ax ⊂ T n

x (V i)
and each element of T n(qi) is in at most a(n+1)J(K−1) sets
Ax we get the following,∑

x∈Cn

|Ax| =
∑

x∈Cn

∑
ŷ

1{ŷ ∈ Ax} (77)

=
∑

ŷ

∑
x∈Cn

1{ŷ ∈ Ax} (78)

≤
∑

ŷ

a(n + 1)J(K−1) (79)

= a(n + 1)J(K−1)
t∑

i′=1

|T n(qi′)| (80)

≤ a(n + 1)J(K−1) · t · max
1≤i′≤t

|T n(qi′)| (81)

= a(n + 1)2J(K−1) max
1≤i′≤t

|T n(qi′)|. (82)

where (79) follows since we have shown that each element
of any T n(qi′) is a member of at most a(n + 1)J(K−1)

sets Ax, (80) follows from converting the sum over ŷ into
sum over types T n(qi′). We can do this because every ŷ is a
member of T n(qi′) for some 1 ≤ i� ≤ t and sets T n(qi′) are
disjoint. Moreover, (81) follows by upper bounding |T n(qi′ )|
by max1≤i′≤t |T n(qi′)| and (82) follows from t ≤ (n +
1)J(K−1). On the other hand,∑

x∈Cn

|Ax| > M
1
a
|T n

x (V i)| (83)

≥ a(n + 1)2J(K−1) max
1≤i≤t

|T n(qi)|. (84)

where (83) follows from the second property of the sets Ax

and (84) from the second condition of Theorem 3. Inequali-
ties (82) and (84) lead to a contradiction because expressions
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are the same but one is strictly smaller than
∑

x∈Cn
|Ax| and

the other one is larger than or equal to
∑

x∈Cn
|Ax|.

Therefore, we can find a codeword x(m) ∈ Cn with a family
of sets F = {Bi} such that Bi ⊂ T n

x(m)(V
i) are large enough

and yield type conflict errors with at least a codewords.
Part 2
We proceed by using the assumption that PY Ŷ |X is a

maximal joint conditional distribution. Since PY Ŷ |X is max-
imal, based on the Lemma 4 for any W ∈ N ε

2 ,pX
(W ) we

can find a maximal joint conditional type pY Ŷ |X such that

pY |X = W and pŶ |X = V i ∈ Nε,pX
(V ). Construct the

graph Gx(m)(pY Ŷ |X) for the codeword x(m) we found above,

connecting T n
x(m)(W ) and T n

x(m)(V
i). If y ∈ T n

x(m)(W ) is

connected to ŷ ∈ T n
x(m)(V

i), by the maximality of pY Ŷ |X
and Lemma 3 we have that

q(y, x(m)
)
≤ q(y, x�(r)

)
for r = 1, 2, . . . , a, (85)

where x�(r) for r = 1, 2, . . . , a are those that satisfy condition
3 above. The above inequality implies that if x(m) is transmit-
ted and y ∈ T n

x(m)(W ) is the channel output, the probability
of correct q-decoding is at most 1

a+1 because there are a
other codewords x�(1), x�(2), . . . , x�(a) ∈ Cn for which the
decoding metric is higher, i.e. q(y, x(m)

)
≤ q(y, x�(r)

)
for

1 ≤ r ≤ a.
Now we count the number of y ∈ T n

x(m)(W ) that cause a
q-decoding error. Recall that from Definition 4, the set of all
y ∈ T n

x(m)(W ) which are connected to a ŷ ∈ Bi in graph
Gx(m)(pY Ŷ |X) was denoted by Ψ21(Bi). In the following,
we give a lower bound on |Ψ21(Bi)| based on the Lemma 1.
So far we have proved the following facts:

1) There exists a codeword x(m) ∈ Cn and a family of
sets F = {Bi} such that Bi ⊂ T n

x(m)(V
i) and |Bi| ≥

a−1
a |T n

x(m)(V
i)|.

2) ∀ŷ ∈ Bi connected to y ∈ T n
x(m)(W ) in graph

Gx(m)(pY Ŷ |X), the following holds,

P
[
m̂ �= m |y is recieved, x(m) is sent

]
≥ a

a + 1
.

(86)

We count the number of elements of Ψ21(Bi) in
Gx(m)(pY Ŷ |X) for 1 ≤ i ≤ t, since the q-decoder makes
errors on elements of Ψ21(Bi). Using the fact that |Bi| ≥
a−1

a |T n
x(m)(V

i)| and Lemma 1 with V1 = T n
x(m)(W ) and

V2 = T n
x(m)(V

i) we get

|Ψ21(Bi)|
|T n

x(m)(W )|
≥ |Bi|

|T n
x(m)(V

i)|
(87)

≥
a−1

a |T n
x(m)(V

i)|
|T n

x(m)(V
i)|

(88)

=
a − 1

a
. (89)

Part 3
In the remaining part of the proof we relate |Ψ21(Bi)|

|T n
x(m)(W )| to

the probability of error. Suppose x(m) is sent over the channel
and y is received. Note by the definition of conditional type,

all elements of T n
x(m)(W ) are equally likely to appear at the

output of the channel when x(m) is sent. Therefore, for every
y0 ∈ T n

x(m)(W ),

P
[
y ∈ T n

x(m)(W ) | x(m) is sent
]

=
∑

ȳ∈T n
x(m)(W )

Wn
(
ȳ|x(m)

)
(90)

= |T n
x(m)(W )| · Wn

(
y0|x(m)

)
(91)

where (91) follows since Wn
(
ȳ|x(m)

)
is the same for all

ȳ ∈ T n
x(m)(W ). Therefore,

P
[
m̂ �= m | p̂y|x(m) = W , x(m) is sent

]
(92)

= P
[
m̂ �= m |y ∈ T n

x(m)(W ), x(m) is sent
]

(93)

=
P
[
m̂ �= m, y ∈ T n

x(m)(W ) |x(m) is sent
]

P[y ∈ T n
x(m)(W ) |x(m) is sent]

(94)

=

∑
ȳ∈T n

x(m)(W ) P
[
m̂ �= m, y = ȳ |x(m) is sent

]
P
[
y ∈ T n

x(m)(W ) |x(m) is sent
] (95)

=
1

P
[
y ∈ T n

x(m)(W ) |x(m) is sent
] ·

·
∑

ȳ∈T n
x(m)(W )

P
[
m̂ �= m |y = ȳ, x(m) is sent

]
Wn

(
ȳ|x(m)

)
(96)

=
1

|T n
x(m)(W )|

∑
ȳ∈T n

x(m)(W )

P
[
m̂ �= m |y = ȳ, x(m) is sent

]
(97)

≥ 1
|T n

x(m)(W )|
∑

ȳ∈Ψ21(Bi)

P
[
m̂ �= m |y = ȳ, x(m) is sent

]
(98)

≥ |Ψ21(Bi)|
|T n

x(m)(W )|
a

a + 1
(99)

≥ a − 1
a + 1

(100)

where (94) follows from definition of conditional probabil-
ity, (97) follows from (91), (98) follows since Ψ21(Bi) ⊆
T n

x(m)(W ), (99) follows from (86) and (100) from (89).
Part 4
In the final step, we have the following inequality,

P
[
m̂ �= m | p̂y|x(m) ∈ N ε

2 ,pX
(W ), x(m) is sent

]
=

P
[
m̂ �= m, p̂y|x(m) ∈ N ε

2 ,pX
(W ) |x(m) is sent

]
P
[
p̂y|x(m) ∈ N ε

2 ,pX
(W ) |x(m) is sent

] (101)

=
∑

W∈N ε
2 ,pX

(W )

P
[
m̂ �= m, p̂y|x(m) = W |x(m) is sent

]
P
[
p̂y|x(m) ∈ N ε

2 ,pX
(W )|x(m) is sent

]
(102)

=
∑

W∈N ε
2 ,pX

(W )

P
[
p̂y|x(m) = W |x(m) is sent

]
P
[
p̂y|x(m) ∈ N ε

2 ,pX
(W )|x(m) is sent

] ·
· P

[
m̂ �= m|p̂y|x(m) = W , x(m) is sent

]
(103)
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≥ a − 1
a + 1

·

·
∑

W∈N ε
2 ,pX

(W )

P
[
p̂y|x(m) = W |x(m) is sent

]
P
[
p̂y|x(m) ∈ N ε

2 ,pX
(W )|x(m) is sent

]
(104)

=
a − 1
a + 1

(105)

where (101) follows from the definition of conditional proba-
bility, (104) follows from inequality (100). This concludes the
proof.

VI. FROM TYPES TO DISTRIBUTIONS

It is known that if rate R > 0 is achievable then for any
� > 0 there exist constant composition codes of rate R − �
whose probability of error tends to 0. In the following lemma,
we prove that if rate R is achievable, then, for any � > 0 there
exist constant composition codes of rate R− � with vanishing
probability of error that have the additional property that their
composition pn ∈ Pn(X ) is such that if pn(j) > 0, then
pn(j) ≥ δ for δ > 0 independent of n, for all j = 1, . . . , J .

Definition 7: Let Cn be a codebook. We say that Ĉn̂, for
some n̂ ≤ n, is a δ-reduction of Cn if there exists a
sub-codebook C̃n ⊆ Cn of composition pX ∈ Pn(X ) such
that Ĉn̂ is obtained by eliminating all symbols in the set
I = {j ∈ X |pX(j) < δ} from C̃n.

Lemma 5: Let R > 0 be a rate, then for any ε > 0 there
exists a δ > 0 independent of n such that for any codebook
Cn of rate R there exists a δ-reduction constant composition
codebook Ĉn̂ with the following properties:

n̂ ≥
(
1 − (J − 1)δ

)
n (106)

P q
e,max(Ĉn̂) ≤ P q

e,max(Cn) (107)

1
n̂

log(|Ĉn̂|) ≥
1
n

log(|Cn|) − ε + O

(
log n

n

)
. (108)

Proof: For any n > 0 we know that |Pn(X )| ≤
(n + 1)J−1. Therefore, by the pigeonhole principle, any
codebook Cn contains a constant composition sub-codebook
C̃n of type pn such that |C̃n| ≥ |Cn|

(n+1)J−1 codewords. Let
I = {i1, i2, ..., it} ⊂ X be the set of all symbols j ∈ X that
pn(j) < δ. Then, there are(

n

npn(i1), npn(i2), . . . , npn(it)

)
= (109)

n!(
npn(i1)

)
!
(
npn(i2)

)
! · · ·

(
npn(it)

)
!
(
n −

∑t
j=1 npn(ij)

)
!

(110)

possible places for symbols of set I in a string of length n.
For ease of notation we use the following notation,(

n

npn(I)

)
=

(
n

npn(i1), npn(i2), . . . , npn(it)

)
. (111)

As a result, by again using the pigeonhole principle, there
exists a sub-codebook C̃n ⊆ Cn with |C̃n| ≥ |Cn|

(n+1)J−1( n
npn(I))

codewords where all symbols in set I are in the same position.
By being in the same position we mean that the codewords

of C̃n have all symbols i1, i2, . . . , it in the same position.
Let Z ⊂ {1, . . . , n} be set of positions where symbols in
I are placed. We then form the δ-reducted codebook Ĉn̂ by
shortening the codewords of C̃n such that symbols in positions
in Z are removed. The rate of this codebook is therefore

1
n̂

log(|Ĉn̂|) ≥
1
n

log(|Ĉn̂|) ≥
1
n

log
(

|Cn|
(n + 1)J−1

(
n

npn(I)

)).

(112)

By using Stirling’s factorial formula we upper-bound the
contribution of the multinomial coefficient by the entropy as
follows,

1
n

log
(

n

npn(I)

)
(113)

=
1
n

log
n!(

npn(i1)
)
! · · ·

(
npn(it)

)
!
(
n −

∑t
j=1 npn(ij)

)
!

(114)

≤ H

(
pn(i1), . . . , pn(it), 1 −

t∑
j=1

pn(ij)
)

+ O

(
log n

n

)
(115)

≤ H
(
δ, . . . , δ︸ ︷︷ ︸

J−1

, 1 − (J − 1)δ
)

+ O

(
log n

n

)
(116)

where H(π1, . . . , πm) = −
∑m

i=1 πi log πi denotes the
entropy function of probability mass function with m nonzero
mass points with probabilities π1, . . . , πm and (116) follows
from observing that pn(i1), pn(i2), ..., pn(it) ≤ δ, t ≤ J − 1
and the fact that δ can be chosen sufficiently small.

Summarizing, we get the following inequality,

1
n̂

log(|Ĉn̂|) ≥
1
n

log(|Ĉn̂|) (117)

≥ R − H
(
δ, . . . , δ︸ ︷︷ ︸

J−1

, 1 − (J − 1)δ
)
− (J − 1)

log(n + 1)
n

(118)

+ O

(
log n

n

)
(119)

Now choosing δ in a way that H(δ, ..., δ, 1 − (J − 1)δ) < ε
we get the desired result.

It remains to show that

P q
e,max(Ĉn̂) ≤ P q

e,max(Cn). (120)

This directly follows from the fact that all symbols in I are
in the same position in the codebook C̃n. Let us define α :
Yn → Y n̂ as the function that takes a string y ∈ Yn and
gives α(y) ∈ Y n̂ by eliminating the symbols in positions in
the set Z . Moreover, let μ : C̃n → Ĉn̂ be the function that
performs the same operations on the codewords of C̃n. Then,
for any y ∈ Yn and x ∈ C̃n we have q(x, y)−q

(
μ(x), α(y)

)
is a function of y, because all the codewords in C̃n have the
same symbols at the eliminated entries. As a result, if y is
decoded to x(m̂) ∈ C̃n under q-decoding, then α(y) would
be decoded to μ(x(m̂)) under q-decoding.

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on April 06,2021 at 10:11:23 UTC from IEEE Xplore.  Restrictions apply. 



ASADI KANGARSHAHI AND GUILLÉN I FÀBREGAS: SINGLE-LETTER UPPER BOUND TO THE MISMATCH CAPACITY 2023

Observe that this argument still holds for the case where
the metric takes −∞ values. This holds since, whenever y is
decoded into x(m̂) ∈ C̃n under q-decoding, this necessarily
implies that q(y, x(m̂)) is finite, which also implies that
q(yi, xi(m̂)) are finite for all 1 ≤ i ≤ n including indices
i ∈ Z . In the case where q(y, x(m̂)) = −∞, then this implies
that q(y, x(m)) = −∞, m = 1, . . . , M and thus, we have a
tie, that is decoded as an error. Moreover, since the set Z in
the lemma has been chosen in such a way that all codewords
of C̃n have the same symbols at positions of Z we have that
the metric between y and codewords of C̃n has been finite in
the eliminated positions. Let xZ and yZ be the symbols of x
and y in positions in set Z , respectively. Now notice that for
all y� ∈ Y n̂ and all x ∈ C̃n∑

y∈α−1(y′)

Wn(y|x) =
∑
yZ

W n̂
(
y�|μ(x)

)
Wn−n̂(yZ |xZ)

(121)

= W n̂
(
y�|μ(x)

)∑
yZ

Wn−n̂(yZ |xZ)

(122)

= W n̂
(
y�|μ(x)

)
(123)

where (121) follows from the fact that W is a memoryless
channel. Moreover, xZ and yZ are strings consisting of
symbols of the index set Z of x and y respectively. As a
result, the probability of error of any codeword x ∈ C̃n is
equal to probability of error of μ(x) ∈ Ĉn̂. Thus,

P q
e,max(Ĉn̂) = P q

e,max(C̃n) (124)

Since C̃n is a sub-codebook of Cn,

P q
e,max(C̃n) ≤ P q

e,max(Cn). (125)

Combining (124) and (125) completes the proof.
The above result is helpful because in order to use the

following theorem, we need the frequency of each symbol
in any codeword to be proportional to n.

Theorem 4 (Hoeffding’s Inequality): Assume Xi, i =
1, 2, . . . , n are independent random variables taking values on
[0, 1]. Let X̄ = 1

n (X1 + X2 + · · · + Xn). Then ∀γ > 0

P
[
|X̄ − E[X̄] | ≥ γ

]
≤ e−2nγ2

. (126)

The following lemma shows that the empirical conditional
type of the received sequence given the sent message would
be close to W .

Lemma 6: Let x ∈ T n(pX) be a codeword, and denote by
y the output of channel W when x is sent. Then, ∀γ > 0 we
have

P
[
p̂y|x(j, k) ∈ Nγ,pX

(W ) |x is sent
]
>1 − JK · e−2npminγ2

(127)

where Nγ,pX
(W ) is the channel type neighborhood defined

in (53).
Proof: Let (j, k) ∈ X × Y and assume px(j) > 0.

We know from the definition of types there are npX(j)
symbols equal to j ∈ X in x. Without loss of generality

assume, x1 = x2 = · · · = xnpX (j) = j. Define the random
variable Xi, i = 1, 2, . . . , npX(j) in the following way,

Xi =

{
1 (yi, xi) = (k, j)
0 otherwise.

(128)

As a result, the conditions of Hoeffding’s inequality hold for
Xi, i = 1, 2, . . . , npX(j) and E[Xi] = P[Xi = 1] = W (k|j).
Therefore, we get the following,

P
[
|W (k|j) − p̂y|x(k|j)| ≥ γ |x is sent

]
≤ e−2npX (j)γ2

.

(129)

As a result, from lower bounding pX(j) by pmin we get

P
[
|W (k|j) − p̂y|x(k|j)| ≥ γ |x is sent

]
≤ e−2npminγ2

.

(130)

As a result we have

P
[
p̂y|x(k|j) ∈ Nγ,px

(W ) |x is sent
]

= 1−P
[
∪j,px(j)>0,k {|W (k|j) − p̂y|x(k|j)|>γ} |x is sent

]
(131)

≥ 1 −
∑

j,px(j)>0,k

P
[
|W (k|j) − p̂y|x(k|j)| > γ |x is sent

]
(132)

≥ 1 −
∑

j,px(j)>0,k

e−2npX (j)γ2
(133)

≥ 1 − JKe−2npminγ2
, (134)

where (132) follows from the union bound, and (133) follows
from (129).

The above result shows that when the frequency of every
symbol in the codebook grows proportional to n, then condi-
tional type of the output string given the sent message will be
close to W with high probability.

VII. PROOF OF THE MAIN THEOREM

In this section, we prove the final part of Theorem 1
using the material developed in the previous sections. Assume
R = R̄q(W ) + σ for some σ > 0. Now, choose � > 0
small enough such that if |V − V |∞ ≤ 2K� for conditional
distribution V, V , then for any distribution PX on X we have
that

|H(V |PX) − H(V |PX)| <
σ

4
(135)

|H(QY ) − H(QY )| <
σ

4
. (136)

where QY , QY correspond to output distributions correspond-
ing to input distribution PX and channel V, V , respectively.
The reader is referred to the Appendix B for a discussion on
the choice of �.

From Lemma 5 with ε = σ
4 , for any codebook Cn with

M ≥ 2nR codewords, there exists a δ-reduction constant
composition codebook Ĉn̂ of length n̂ and type p̂n̂ such
that (106)–(108) are satisfied. Since the required δ to satisfy
the above inequalities is independent of n, then choose N0
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large enough such that � ≥ 2K
N0(1−(J−1)δ)δ . Set n > N0.

Choose a maximal joint conditional distribution PY Ŷ |X such
that I(p̂n̂, PŶ |X) ≤ R̄q(W ) and let V = PŶ |X . Such a PY Ŷ |X
exists because the set Mmax(q)∩{PY Ŷ |X |PY |X = W} which
is the domain of the minimization in (17) is a compact set and
the minimizer always exists. Moreover, for any conditional
distributions V̂ such that |V̂ − V |∞ ≤ 2K� and q being
the output distribution corresponding to input type p̂n and
channel V∣∣∣ max

V ∈N2Kε,p̂n
(V )

H(q) − H(V̂ |p̂n̂)
∣∣∣

≤ |H(q) − H(V |p̂n̂)| + σ

2
(137)

= I(p̂n̂, V ) +
σ

2
(138)

where (137) follows from (135) and (136).
Suppose Nε,p̂n̂

(V ) = {V 1, V 2, . . . , V t} and qi be the
output type corresponding to input type p̂n̂ and conditional
type V i. For any 1 ≤ i ≤ t we have

1
n̂

log
max1≤s≤t |T n̂(qs)|

|T n̂
x (V i)|

=
1
n̂

log
2n̂
�

H(qi′)+O( log n̂
n̂ )

�

2n̂(H(V i|p̂n̂)+O( log n̂
n̂ ))

(139)

≤ I(p̂n̂, V ) +
σ

2
+ O

(
log n̂

n̂

)
(140)

where i� = arg max1≤s≤t |T n̂(qs)| and (140) follows
form (138) (see [14, Ch. 2] for details about the log n̂

n̂ terms.)
Now, for n > N0 we have from (108) with ε = σ

4 , (140) and
the condition I(p̂n̂, PŶ |X) ≤ R̄q(W ) that

|Ĉn̂|
|T n̂

x (V i)|
max1≤s≤t |T n̂(qs)| ≥ 2n̂(R−σ

4 −I(p̂n̂,V )−σ
2 +O( log n̂

n̂ )).

(141)

As a result,

|Ĉn̂||T n̂
x (V i)| ≥ 2n̂(σ

4 +O( log n̂
n̂ )) max

1≤s≤t
|T n̂(qs)|. (142)

Setting a =
⌊

2
1
2 n̂(σ

4 +O( log n̂
n̂ ))

(n̂+1)J(K−1)

⌋
validates the conditions of

Theorem 3. As a result, there exists x(m) ∈ Ĉn̂ such that

P

[
m̂ �= m

∣∣ p̂y|x(m) ∈ N ε
2 ,p̂n̂

(W ), x(m) is sent
]
>1 − 2

a+1
.

(143)

According to the definition of limit, choosing N1 such that if
n > N1 is large enough, we can bound

a >
1
2
· 2

1
2 n̂(σ

4 +O( log n̂
n̂ ))

(n̂ + 1)J(K−1)
(144)

≥ 2
1
2 n̂( σ

4 +O( log n̂
n̂ )−2J(K−1) log(n̂+1)

n̂ − log(2)
n̂ ). (145)

Finally, we write

P q
e,max(Cn) ≥ P q

e,max(Ĉn̂)

= max
m∈{1,...,M}

P
[
m̂ �= m |x(m) is sent

]
(146)

≥ max
m∈{1,...,M}

P
[
m̂ �= m | p̂y|x(m)∈N ε

2 ,p̂n̂
(W ), x(m) is sent

]
· P

[
p̂y|x(m) ∈ N ε

2 ,p̂n̂
(W )|x(m) is sent

]
(147)

≥
(
1 − 2

a + 1

)(
1 − JK2−2n̂δ ε2

4

)
(148)

≥ 1 − 2−n̂Ēq(R) (149)

where x(m) is the codeword sent from codebook Ĉn̂, (148)
follows from applying Theorem 3 to the first probability
in (147) and Lemma 6 to the second probability in (147),
where Ēq(R) Δ= min

{
δε2

2 − log JK
n̂ , 1

2

(
σ
4 + O

(
log n̂

n̂

))}
.

Setting n larger than max{N0, N1} yields the desired result.

VIII. CONVEXITY ANALYSIS

In this section, we show that the optimization (17) is a
convex-concave saddlepoint problem. First we argue that the
constraints induce a convex set.

Lemma 7: For any channel W and metric q, the set of
joint conditional distributions PY Ŷ |X satisfying both PY Ŷ |X ∈
Mmax(q) and PY |X = W , is a convex set.

Proof: Let PY Ŷ |X and P �
Y Ŷ |X both satisfy the above

constraints. Therefore, for any 0 < λ < 1 we have

λPY |X + (1 − λ)P �
Y |X = W. (150)

In addition, if for some k1, k2 we have j /∈ Sq(k1, k2), both
PY Ŷ |X(k1, k2|j) and P �

Y Ŷ |X(k1, k2|j) are equal to zero, and
so is any linear combination of them. Therefore,

λPY Ŷ |X + (1 − λ)P �
Y Ŷ |X ∈ Mmax(q). (151)

Moreover, I(PX , PŶ |X) is convex in terms of PŶ |X , and
concave in terms of PX . Since PŶ |X is a linear function of
PY Ŷ |X , we get that I(PX , PŶ |X) is also convex in terms of
PY Ŷ |X . Therefore from the minimax theorem [15],

R̄q(W ) = max
PX

min
PY Ŷ |X∈Mmax(q)

PY |X=W

I(PX , PŶ |X) (152)

= min
PY Ŷ |X∈Mmax(q)

PY |X=W

max
PX

I(PX , PŶ |X) (153)

= min
PY Ŷ |X∈Mmax(q)

PY |X=W

C(PŶ |X). (154)

The rest of this section is devoted to deriving the KKT
conditions for the optimization problem in (17). Given that
I(PX , PŶ |X) is convex in PY Ŷ |X and concave in PX , then
the KKT conditions are sufficient for global optimality [16].
For convenience, we define f(PX , PY Ŷ |X) � I(PX , PŶ |X)
and rewrite the optimization problem in (17) as,

R̄q(W ) = max
PX

min
PY Ŷ |X∈Mmax(q)

PY |X=W

f(PX , PY Ŷ |X). (155)
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Let P ∗
X , P ∗

Y Ŷ |X be the optimal input and joint conditional
distributions in (155) and Q∗

Ŷ
be the output distribution

induced by P ∗
X and P ∗

Ŷ |X . Then for P ∗
X we have the following

constraints:

P ∗
X(j) ≥ 0, ∀j ∈ X (156)∑

j∈X
P ∗

X(j) = 1. (157)

Let μj , j = 1, 2, . . . , J be the Lagrange multipliers corre-
sponding the inequalities in (156) and ρ be the Lagrange
multiplier corresponding to (157). Therefore, from stationarity
we have

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)
∣∣∣∣
PX=P∗

X

= ρ + μj . (158)

Then from the complementary slackness we have
μj P ∗

X(j) = 0 and from the dual feasibility we have
μj ≥ 0 which leads to the separation of the equations (158)
into two cases [16]. If P ∗

X(j) > 0

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)
∣∣∣∣
PX=P∗

X

= ρ. (159)

And when P ∗
X(j) = 0 we have

∂

∂PX(j)
f(PX , P ∗

Y Ŷ |X)
∣∣∣∣
PX=P∗

X

≤ ρ. (160)

Note that, because there is no other constraint on μj , all of the
KKT conditions are summarized in (159) and (160). Moreover,
computing the derivatives in (159) and (160) gives

∂

∂PX(j)
f(PX ,P ∗

Y Ŷ |X)
∣∣∣∣
PX=P∗

X

=
∑
k∈Y

P ∗
Ŷ |X(k|j) log

P ∗
Ŷ |X(k|j)
Q∗

Ŷ
(k)

− 1. (161)

Similarly, for P ∗
Y Ŷ |X we have the following constraints. For

all j, k1, k2 ∈ X × Y × Y ,

P ∗
Y Ŷ |X(k1, k2|j) ≥ 0, (162)

P ∗
Y Ŷ |X(k1, k2|j) = 0, if j /∈ Sq(k1, k2) (163)

where (162) corresponds to P ∗
Y Ŷ |X(k1, k2|j) being a distrib-

ution and (163) corresponds to P ∗
Y Ŷ |X(k1, k2|j) ∈ Mmax(q).

Moreover from the constraint PY |X = W we get for all
j, k1 ∈ X × Y∑

k2

P ∗
Y Ŷ |X(k1, k2|j) = W (k1|j). (164)

For the ease of notation, we skip the step of explicitly consid-
ering a Lagrange multiplier for (162). Details follow similarly
to the above derivation. If we use a Lagrange multiplier
λj,k1 for each of the conditions in (164), we have when
P ∗

Y Ŷ |X(k1, k2|j) > 0

∂

∂PY Ŷ |X(k1, k2|j)
f(P ∗

X , PY Ŷ |X)
∣∣∣∣
PY Ŷ |X=P∗

Y Ŷ |X

= λj,k1

(165)

and when P ∗
Y Ŷ |X(k1, k2|j) = 0 and j ∈ Sq(k1, k2) we should

have

∂

∂PY Ŷ |X(k1, k2|j)
f(P ∗

X , PY Ŷ |X)
∣∣∣∣
PY Ŷ |X=P∗

Y Ŷ |X

≥ λj,k1 .

(166)

Explicitly computing the derivative gives

∂

∂PY Ŷ |X(k1, k2|j)
f(P ∗

X , PY Ŷ |X)
∣∣∣∣
PY Ŷ |X=P∗

Y Ŷ |X

= P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

. (167)

Summarizing, for the KKT optimality conditions of (155)
we get the following inequalities,

1) If P ∗
X(j) > 0,∑

k∈Y
P ∗

Ŷ |X(k|j) log
P ∗

Ŷ |X(k|j)
Q∗

Ŷ
(k)

= 1 + ρ. (168)

2) If P ∗
X(j) = 0,∑

k∈Y
P ∗

Ŷ |X(k|j) log
P ∗

Ŷ |X(k|j)
Q∗

Ŷ
(k)

≤ 1 + ρ. (169)

3) If P ∗
Y Ŷ |X(k1, k2|j) > 0,

P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

= λj,k1 . (170)

4) If P ∗
Y Ŷ |X(k1, k2|j) = 0 and j ∈ Sq(k1, k2),

P ∗
X(j) log

P ∗
Ŷ |X(k2|j)
Q∗

Ŷ
(k2)

≥ λj,k1 . (171)

In the next sections, we employ the above KKT conditions
to efficiently compute R̄q(W ) and to analyze the multiletter
version of the bound.

IX. COMPUTATION OF R̄q(W )

In this section, we turn to the computation of the pro-
posed upper bound R̄q(W ). Before describing the algorithm
in detail, we introduce a number of concepts related to
convex-concave optimization. Let D ⊂ R

n be an open convex
set. The standard inner product on R

n is denoted by 〈·, ·〉.
A mirror map is a function Ψ : D → R with the following
properties:

1) Ψ is strictly convex and continuously differentiable on D,
where strict convexity means that for all v1, v2 ∈ D

Ψ(v1) − Ψ(v2) −
〈
∇Ψ(v2), v1 − v2

〉
> 0, (172)

2) The range of ∇Ψ is all of R
n i.e. ∇Ψ(D) = R

n,
3) The gradient of Ψ diverges on the boundary of D, denoted

by ∂D, that is

lim
v→∂D

‖∇Ψ(v)‖ = ∞, (173)

where ‖·‖ denotes the Euclidean norm.
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The Bregman divergence BΨ(·, ·) : D×D → R with respect
to a mirror map Ψ is defined as

BΨ(v1, v2) = Ψ(v1) − Ψ(v2) −
〈
∇Ψ(v2), v1 − v2

〉
.

(174)

Let D ⊂ R
n be a convex set. Function h : D → R is said to be

α-strongly convex with respect to norm |·| if it is differentiable
on D and for all v1, v2 ∈ D we have

h(v1) − h(v2) −
〈
∇h(v2), v1 − v2

〉
≥ α

2
|v1 − v2|2,

(175)

where the norm | · | is not necessarily induced by the standard
inner product, i.e. it is not necessarily the Euclidean norm.
If the mirror map Ψ : D → R is 1-strongly convex with
respect to the norm | · | then from the definition (175) for all
v1, v2 ∈ D we have

BΨ(v1, v2) ≥
1
2
|v1 − v2|2. (176)

We aim to compute the value of the following saddlepoint
problem,

R̄q(W ) = max
PX

min
PY Ŷ |X∈Mmax(q)

PY |X=W

f(PX , PY Ŷ |X). (177)

For ease of notation and consistency we define E1 and E2

be the constraint sets corresponding to the maximization and
minimization, respectively,

E1 =
{
v ∈ R

J | v(j) ≥ 0,

J∑
j=1

v(j) = 1
}

(178)

E2 =
{
u ∈ R

J×K×K
∣∣ K∑

k2=1

u(j, k1, k2) = W (k1|j),

u(j, k1, k2) ≥ 0, u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)
}

(179)

where E1 corresponds to the set of distributions over X
and E2 corresponds to the set of maximal joint conditional
distributions PY Ŷ |X such that PY |X = W i.e. Mmax(q) ∩
{PY Ŷ |X |PY |X = W}. There is a natural bijection between
the two sets by mapping u to PY Ŷ |X such that for
every (j, k1, k2) ∈ X × Y × Y we have u(j, k1, k2) =
PY Ŷ |X(k1, k2|j). With a slight abuse of notation let f be
defined for vectors v ∈ E1, u ∈ E2 as it is defined for their cor-
responding distributions PX , PY Ŷ |X in the previous section,

i.e., f(v, u) � f(PX , PY Ŷ |X). Therefore, with a slight abuse
of notation, we rewrite the saddlepoint problem (177) as

R̄q(W ) = max
v∈E1

min
u∈E2

f(v, u). (180)

In the rest of this section, whenever u is used, it is considered
that u(j, k1, k2) = 0 if j /∈ Sq(k1, k2), i.e., that the corre-
sponding PY Ŷ |X ∈ Mmax(q). Additionally, we choose

D1 = {v ∈ R
J |0 ≤ v(j), 0 ≤ j ≤ J} (181)

and

D2 = {u ∈ R
J×K×K |0 ≤ y(j, k1, k2), 0 ≤ j ≤ J,

0 ≤ k1, k2 ≤ K, u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)}.
(182)

It is known that the function Ψ1(v) =
∑

i v(i) log v(i)
is a 1-strongly convex mirror map on D1 with respect to
norm | · |1 [17]. Additionally, let Ψ2(u) =

∑
j,k1,k2

1{j ∈
Sq(k1, k2)}u(j, k1, k2) log u(j, k1, k2). Note that ∇Ψ2 is sur-
jective on

{
u ∈ R

J×K×K
∣∣u(j, k1, k2) = 0 if j /∈

Sq(k1, k2)
}

. Moreover, in all of the computations regarding u
we only use the entries u(j, k1, k2) such that j ∈ Sq(k1, k2)
and ignore all other entries, i.e., they are set to 0 from the
beginning of the algorithm and never change. Therefore, with
a slight abuse of notation we say Ψ2 is a 1-strongly convex
mirror map on D2 with respect to norm | · |1. Note that for
Ψ2 being a mirror map, from the definition we need it to be
surjective on R

J×K×K , but since in the whole algorithm only
the coordinates (j, k1, k2) are used such that j ∈ Sq(k1, k2)
and ∇Ψ2 is surjective on

{
u ∈ R

J×K×K
∣∣u(j, k1, k2) =

0 if j /∈ Sq(k1, k2)
}

all the properties of a mirror map are
preserved. Moreover, the corresponding Bregman divergences
BΨ1 and BΨ2 are given by

BΨ1(v1, v2) =
∑

i

v1(i) log
v1(i)
v2(i)

− v1(i) + v2(i) (183)

BΨ2(u1, u2)
=

∑
j,k1,k2

1{j ∈ Sq(k1, k2)}
[
u1(j, k1, k2) log

u1(j, k1, k2)
u2(j, k1, k2)

− u1(j, k1, k2) + u2(j, k1, k2)
]
. (184)

Note that when v1, v2 ∈ E1 the Bregman divergence
BΨ1(v1, v2) reduces to relative entropy between v1 and v2.

It is known that the Bregman divergence (183) is jointly
convex in its arguments [17]. Similarly, (184) is jointly convex
in its arguments as well.

We will use the algorithm mirror prox [12], known to be
able to iteratively find the saddlepoint for convex-concave
optimization problems where the gradients ∇vf(v, u) and
∇uf(v, u) are Lipshitz functions. Unfortunately, this condi-
tion does not hold in our problem, because the gradient is not
necessarily finite on the boundries of both E1, E2. Therefore,
we need the following result to control the growth of the
gradient. Then using this fact, we add an additional step to
the standard mirror prox algorithm and show that it converges
to the saddlepoint. Note that the notation ∇v=v0f(v, u0) rep-
resents the gradient of f(v, u0) at point v0; ∇u=u0f(v0, u)
is defined accordingly.

Lemma 8: Let v0, u0 be defined as

v0(j) =
1
J

, ∀j ∈ X (185)

for all (j, k1, k2) ∈ X × Y × Y.

u0(j, k1, k2) =
W (k1|j)1{j ∈ Sq(k1, k2)})
|
∑

k2
1{j ∈ Sq(k1, k2)}|

. (186)

Let κ = 1
T , then for any (v�, u�) ∈ E1 × E2

|∇v=(1−κ)v′+κv0f(v, (1 − κ)u� + κu0)|∞

≤ log(K) + log
TJ

Wmin
+ 1 (187)

|∇u=(1−κ)u′+κu0f((1 − κ)v� + κv0, u)|∞

≤ log
TK

Wmin
+ log

TJ

Wmin
, (188)

where Wmin = minj∈X ,k∈Y:
W (k|j)>0

W (k|j).
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Proof: In the following expressions PX , PY Ŷ |X corre-
spond to (1 − κ)v� + κv0, (1 − κ)u� + κu0, respectively.
Note that every entry of (1 − κ)v� + κv0 is greater than
or equal to 1

TJ . As a result, every entry of QŶ , which is
output distribution corresponding to PX , PY Ŷ |X , is either 0
or greater than or equal to Wmin

TJ . Recall that the j-th entry
of |∇v=(1−κ)v′+κv0f(v, (1 − κ)u� + κu0)|∞ is equal to

∂
∂PX (j)f(PX , PY Ŷ |X). Therefore, (187) follows by,∣∣∣∣ ∂

∂PX(j)
f(PX , PY Ŷ |X)

∣∣∣∣
=

∣∣∣∣∣∑
k∈Y

PŶ |X(k|j) log
PŶ |X(k|j)

QŶ (k)
− 1

∣∣∣∣∣ (189)

=

∣∣∣∣∣−H(Ŷ |X = j) −
∑
k∈Y

PŶ |X(k|j) log(QŶ (k)) − 1

∣∣∣∣∣
(190)

≤ log(K) + log
TJ

Wmin
+ 1. (191)

Recall that the entries of |∇v=(1−κ)v′+κv0f(v, (1 − κ)u� +
κu0)|∞ are equal to ∂

∂PY Ŷ |X (k1,k2|j)f(PX , PY Ŷ |X) for 1 ≤
k1, k2 ≤ K . Moreover, when j ∈ Sq(k1, k2) then,
PŶ |X(k2|j) ≥ PY Ŷ |X(k1, k2|j) ≥ Wmin

TK . As a result (188)
follows from,∣∣∣∣∣ ∂

∂PY Ŷ |X(k1, k2|j)
f(PX , PY Ŷ |X)

∣∣∣∣∣
=

∣∣∣∣∣PX(j) log
PŶ |X(k2|j)

QŶ (k2)

∣∣∣∣∣ (192)

≤
∣∣∣log PŶ |X(k2|j)

∣∣∣ +
∣∣log QŶ (k2)

∣∣ (193)

≤ log
TK

Wmin
+ log

TJ

Wmin
(194)

For ease of notation, let

G = max
{

log(K)+log
TJ

Wmin
+ 1, log

TK

Wmin
+ log

TJ

Wmin

}
(195)

in the rest of the section. From the choices of v0, u0 in (185)
and (186), and (183) and (184) we get

max
v∈E1

BΨ1(v, v0) ≤ log(J) (196)

max
u∈E2

BΨ2(u, u0) ≤ J log
K

Wmin
. (197)

Here (196) holds since the relative entropy between a distribu-
tion and the uniform distribution is bounded by the logarithm
of the alphabet cardinality. Furthermore, from definition (186)
all of the entries of u0 are either 0 or not less than Wmin

K .
Additionally, by definition of set E2, u is equal to zero at
entries that u0 equals to zero. Using these two facts (197)
follows. Let vt and ut, t = 1, 2, . . . , T be defined by the fol-
lowing iterative algorithm, where T is the maximum number
of iterations. The computation vt is described in Algorithm 1,
where ηt is the stepsize at iteration t. From the definition

Algorithm 1 Computation of vt

Initialize: choose v0, u0 from (185) and (186),
respectively
for t = 1, 2, . . . , T do

Gradient step: Find ṽt from
∇Ψ1(ṽt) = ∇Ψ1(vt−1) − ηt∇v=vt−1f(v, ut−1)
Projection step: Compute v�

t from
v�

t = arg minv∈E1
BΨ1(v, ṽt)

Mixture step: Compute vt from vt = (1− κ)v�
t + κv0

end

Algorithm 2 Computation of ut

Initialize: choose v0, u0 from (185) and (186),
respectively
for t = 1, 2, . . . , T do

Gradient step: Find ũt from
∇Ψ2(ũt) = ∇Ψ2(ut−1) − ηt∇u=ut−1f(vt−1, u)
Projection step: Compute u�

t from
u�

t = argminu∈E2
BΨ2(u, ũt)

Mixture step: Compute ut from ut = (1−κ)u�
t +κu0

end

of mirror map, the range of ∇Ψ1 is RJ , guaranteeing the
existence of ṽt in the gradient step of the above algorithm.
Similarly, the computation of ut is described in Algorithm 2.

Similarly, the range of ∇Ψ2 is
{

u ∈
R

J×K×K
∣∣ u(j, k1, k2) = 0 if j /∈ Sq(k1, k2)

}
, guaranteeing

the existence of ũt+1 in the gradient step.
The following result guarantees the convergence of pro-

posed iterative algorithm to the saddlepoint.

Proposition 1: Let κ = 1
T and the stepsize ηt = η̄ =

√
1
T .

Then, we have∣∣∣∣f( 1
T

T−1∑
t=0

vt,
1
T

T−1∑
t=0

ut

)
− min

v∈E1
max
u∈E2

f(v, u)
∣∣∣∣

≤ 1√
T

(
4J log

K

Wmin
+ G2

)
. (198)

Proof: We assume several properties of Bregman diver-
gences without proof. For further details see [17]. The
first-order optimality of Bregman divergence projections states
that for any v∗ ∈ E1 [17]

〈gt, v
�
t+1 − v∗〉

≤ 1
η̄

(
BΨ(v∗, vt) − BΨ(v∗, v

�
t+1) − BΨ(v�

t+1, vt)
)
, (199)

where for ease of notation we have defined gt
Δ=

∇v=vtf(v, ut). As a result, for any arbitrary v∗ ∈ E1 we
have

T−1∑
t=0

[
f(vt, ut) − f(v∗, ut)

]
≤

T−1∑
t=0

〈gt, vt − v∗〉 (200)
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=
T−1∑
t=0

[
〈gt, v

�
t+1 − v∗〉 + 〈gt, vt − v�

t+1〉
]

(201)

≤
T−1∑
t=0

[
1
η̄

(
BΨ1(v∗, vt)−BΨ1(v∗, v

�
t+1)−BΨ1(v

�
t+1, vt)

)
+ 〈gt, vt − v�

t+1〉
]

(202)

≤
T−1∑
t=0

[
1
η̄

(
BΨ1(v∗, vt)−BΨ1(v∗, v

�
t+1)−BΨ1(v

�
t+1, vt)

)
+

1
2η̄

|vt − v�
t+1|21 +

η̄

2
G2

]
(203)

≤
T−1∑
t=0

[
1
η̄

(
BΨ1(v∗, vt) − BΨ1(v∗, v

�
t+1)

)
− 1

2η̄
|v�

t+1 − vt|21 +
1
2η̄

|vt − v�
t+1|21 +

η̄

2
G2

]
(204)

=
T−1∑
t=0

[
1
η̄

(
BΨ1(v∗, vt) − BΨ1(v∗, v

�
t+1)

)
+

η̄

2
G2

]
, (205)

where (200) follows from the definition of convexity
of f , (203) follows from Hölder’s inequality [18] 〈gt, vt −
vt+1〉 ≤ |vt − vt+1|1|gt|∞ ≤ 1

2η̄ |vt − vt+1|21 + η̄
2 |gt|2∞

and |gt|∞ ≤ G from Lemma 8. Moreover, inequality (205)
follows from (176). Furthermore, from convexity of BΨ1(·, ·)
in the second argument we have that

BΨ1(v∗, vt) ≤ (1 − κ)BΨ1(v∗, v
�
t) + κBΨ1(v∗, v0). (206)

Therefore plugging (206) in (205) we get

T−1∑
t=0

(
f(vt, ut) − f(v∗, ut)

)
≤

T−1∑
t=0

[
1
η̄

(
(1 − κ)BΨ1(v∗, v

�
t) + κBΨ1(v∗, v0)

− BΨ1(v∗, v
�
t+1)

)
+

η̄

2
G2

]
(207)

=
T−1∑
t=0

1
η̄

(
(1 − κ)BΨ1(v∗, v

�
t) + κBΨ1(v∗, v0)

− BΨ1(v∗, v
�
t+1)

)
+

T η̄

2
G2 (208)

=
T−1∑
t=0

1
η̄

(
(1 − κ)BΨ1(v∗, v

�
t) − BΨ1(v∗, v

�
t+1)

)
+

Tκ

η̄
BΨ1(v∗, v0) +

T η̄

2
G2 (209)

=
T−2∑
t=0

1
η̄

(
− κBΨ1(v∗, v

�
t+1)

)
+ (1 − κ)BΨ1(v∗, v

�
0)

− BΨ1(v∗, v
�
T ) +

Tκ

η̄
BΨ1(v∗, v0) +

T η̄

2
G2 (210)

≤ 1
η̄
BΨ1(v∗, v0) +

Tκ

η̄
BΨ1(v∗, v0) +

T η̄

2
G2 (211)

where v�
0 = v0 (note that this is consistent with inequal-

ity (206)) and (211) follows from BΨ1(·, ·) being non-negative.

Therefore, by setting κ = 1
T , η̄ =

√
1
T and noticing

BΨ1(v, v0) ≤ log(J) ≤ J log K
Wmin

for J, K > 1 we get

1
T

T−1∑
t=0

(
f(vt, ut) − f(v∗, ut)

)
≤ 1√

T

(
2J log

K

Wmin
+

1
2
G2

)
. (212)

The same procedure gives

1
T

T−1∑
t=0

(
f(vt, ut) − f(vt, u∗)

)
≥ −1√

T

(
2J log

K

Wmin
+

1
2
G2

)
. (213)

As a result, we have

f
( 1

T

T−1∑
t=0

vt, u∗
)
− f

(
v∗,

1
T

T−1∑
t=0

ut

)
≤ 1

T

T−1∑
t=0

(
f(vt, u∗) − f(v∗, ut)

)
(214)

≤ 1√
T

(
4J log

K

Wmin
+ G2

)
(215)

where (214) follows from the convex-concave nature of f
and (215) follows from summing (212) and (213).

Since v∗ and u∗ were arbitrary, let v∗ =
argminv∈E1

f
(
v, 1

T

∑T−1
t=0 ut

)
and u∗ =

argmaxu∈E2
f
(

1
T

∑T−1
t=0 vt, u

)
then we have

f
(
v∗,

1
T

T−1∑
t=0

ut

)
= min

v∈E1
f
(
v,

1
T

T−1∑
t=0

ut

)
(216)

≤ min
v∈E1

max
u∈E2

f(v, u) (217)

≤ max
u∈E2

f
( 1

T

T−1∑
t=0

vt, u
)

(218)

= f
( 1

T

T−1∑
t=0

vt, u∗
)
. (219)

In addition, observe that

f
(
v∗,

1
T

T−1∑
t=0

ut

)
≤ f

( 1
T

T−1∑
t=0

vt,
1
T

T−1∑
t=0

ut

)
(220)

≤ f
( 1

T

T−1∑
t=0

vt, u∗
)
, (221)

and therefore by combining (216) and (220) we have∣∣∣∣f( 1
T

T−1∑
t=0

vt,
1
T

T−1∑
t=0

ut

)
− min

v∈E1
max
u∈E2

f(v, u)
∣∣∣∣

≤ f
( 1

T

T−1∑
t=0

vt, u∗

)
− f

(
v∗,

1
T

T−1∑
t=0

ut

)
. (222)

This combined with (215) finishes the proof.
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Fig. 1. Convergence of the proposed iterative algorithm to compute R̄q(W )
for the channel and metric from Example 2.

It is well known that the divergence projection step in
Algorithm 1 can be computed efficiently as [17], [19]

v�
t+1(j) =

ṽt+1(j)∑
j′ ṽt+1(j�)

. (223)

Similarly, the divergence projection on Mmax(q) ∩
{PY Ŷ |X |PY |X = W} in Algorithm 2 can be computed
efficiently as

u�
t+1(j, k1, k

�
2) =

W (k1|j)ỹt+1(j, k1, k2)1{j ∈ S(k1, k2)}∑
k′
2
ỹt+1(j, k1, k�

2)1{j ∈ S(k1, k�
2)}

.

(224)

Then the iterative algorithm at iteration t + 1 is summarized
by the following:

ṽt+1 = vt � exp
( 1√

T
∇v=vtf(v, ut)

)
(225)

v�
t+1(j) =

ṽt+1(j)∑
j′ ṽt+1(j�)

(226)

vt+1 =
T − 1

T
v�

t+1 +
1
T

v0 (227)

and

ũt+1 = ut � exp
( 1√

T
∇u=utf(vt, u)

)
(228)

u�
t+1(j, k1, k

�
2) =

W (k1|j)ũt+1(j, k1, k2)1{j ∈ S(k1, k2)}∑
k′
2
ũt+1(j, k1, k�

2)1{j ∈ S(k1, k�
2)}
(229)

ut+1 =
T − 1

T
u�

t+1 +
1
T

u0, (230)

where a � b denotes componentwise product of the entries
of vectors a, b. Moreover, (225) and (228) correspond to the
gradient steps. Therefore, we can use the gradients computed
in the previous section to run the algorithm. Figure 1 illustrates
the convergence of R̄t

q(W ) over the iterations t to the upper
bound R̄q(W ), using the suggested iterative algorithm for the

channel and metric of Example 2. For reference, we also plot
the C(W ) and the LM rate RLM

q (W ). We have chosen an
equiprobable maximal joint conditional distribution as initial
condition and the step size η̄ = 1√

100
.

X. MULTILETTER BOUND

In this section, we study the multiletter extension of the
bound (17). In particular, we show that the multiletter version
cannot improve on the single-letter bound. We define the
�-letter decoding metric q(�) : X � × Y� → R as follows,

q(�)
(
(x1, x2, . . . , x�), (y1, y2, . . . , y�)

)
=

�∑
i=1

q(xi, yi).

(231)

This decoding metric definition is consistent with the additive
decoder we have defined in (5). We denote j ∈ X � and k ∈ Y�

as the �-letter inputs and outputs, respectively. Let W (�) denote
a DMC over input alphabet X � and output alphabet Y� with
the channel rule W (�)

(
(y1, y2, . . . , y�)|(x1, x2, . . . , x�)

)
=∏�

i=1 W (yi|xi). Additionally, we define P
(�)
X and P

(�)

Y Ŷ |X
accordingly

P
(�)
X (x1, . . . x�) =

�∏
i=1

PX(xi) (232)

P
(�)

Y Ŷ |X

(
(y1, y2, . . . , y�), (ŷ1, ŷ2, . . . , ŷ�)|(x1, x2, . . . , x�)

)
=

�∏
i=1

PY Ŷ |X(yi, ŷi|xi) (233)

X� and Y �, Ŷ � denote random variables defined on alphabets
X �, Y� and Y�, respectively. Moreover, S(�)

q (k1, k2) is defined
as

S(�)
q (k1, k2)
Δ=

{
i ∈ X � | i = arg max

i′∈X �

q(�)(i�, k2) − q(�)(i�, k1)
}
. (234)

In the following lemma we characterize the sets
S(�)

q (k1, k2) and relate them to Sq(k1,i, k2,i), i = 1, 2, . . . , �.
Lemma 9: For j ∈ X �, k1 ∈ Y�, k2 ∈ Y� we have that

j ∈ S(�)
q (k1, k2) if and only if for all 1 ≤ i ≤ � we have

ji ∈ Sq(k1,i, k2,i). (235)

Proof: We have
arg max

j∈X �

q(�)(j, k2) − q(�)(j, k1)

= arg max
j∈X �

�∑
i=1

q(ji, k2,i) − q(ji, k2,i) (236)

= arg max
(j1,j2,...,j�)∈X �

�∑
i=1

q(ji, k2,i) − q(ji, k2,i). (237)

From (237) we get that if (j1, j2, . . . , j�) ∈ Sq(k1, k2) then
for all 1 ≤ i ≤ � we should have ji ∈ Sq(k1,i, k2,i). Therefore,

S(�)
q (k1, k2)
= Sq(k1,1, k2,1) × Sq(k1,2, k2,2) × · · · × Sq(k1,�, k2,�).

(238)
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For the above �-letter alphabets and distributions, the con-
struction and analysis of the bound remains unchanged. There-
fore, (17) remains valid for its �-letter extension, which can
be written as

R̄(�)
q (W ) � 1

�
R̄q(�)(W (�)) (239)

=
1
�

max
P

X�

min
P

Y �Ŷ �|X�∈Mmax(q(�))

P
Y �|X� =W (�)

I(pX� , PŶ �|X�)

(240)

=
1
�

min
P

Y �Ŷ �|X�∈Mmax(q(�))

P
Y �|X�=W (�)

C(PŶ �|X�). (241)

We have the following result.
Proposition 2:

R̄(�)
q (W ) = R̄q(W ). (242)

Proof: Recall that if we find a feasible pair PY �Ŷ �|X� , PX�

such that when fixing PY �Ŷ �|X� , the input distribution PX� is
a maximizer of f(·, PY �Ŷ �|X�), and when fixing PX� , the joint
conditional distribution PY �Ŷ �|X� is a minimizer of f(pX� , ·),
then the pair (PX� , PY �Ŷ �|X�) is a saddlepoint. Therefore,

we can use the mentioned property to show P
∗(�)
X , P

∗(�)
Y Ŷ |X

is a saddlepoint for the multiletter bound. As a result, it is
sufficient to show that P

∗(�)
Y Ŷ |X is a minimizer of (240) by fixing

P
∗(�)
X and additionally, P

∗(�)
X is the maximizer of (240) by

fixing P
∗(�)
Y Ŷ |X .

Firstly, we verify the claim that P
∗(�)
X is the maximizer

of (240) by fixing P
∗(�)
Y Ŷ |X . The validity of this claim follows

from (241) and the fact that 1
� C(P ∗(�)

Ŷ |X) = C(P ∗
Ŷ |X) with

the product distribution P
∗(�)
X being the capacity-achieving

distribution of C(P ∗(�)
Ŷ |X).

Secondly, we verify the claim that P
∗(�)
Y Ŷ |X is a minimizer

of (240) by fixing P
∗(�)
X . This is shown in the following

lemma. We prove that by fixing P
∗(�)
X , then P

∗(�)
Y Ŷ |X satisfies the

KKT conditions and hence, it is a minimizer of (240). Before
stating the result, we recall that the multiletter counterparts
of the single-letter KKT conditions given in (170) and (171)
hold. Moreover, as in the single-letter case, the multiletter
KKT conditions are sufficient for global optimality, because
the function f(P ∗�

X , ·) is concave and optimization constraints
are affine [16]. Using Lemma 10 below completes the proof.

Lemma 10: Let P ∗
X , P ∗

Y Ŷ |X be a saddlepoint for optimiza-

tion problem (17). Set PX� = P
∗(�)
X . Then, the joint condi-

tional distribution P
∗(�)
Y Ŷ |X is a minimizer of

min
P

Y �Ŷ �|X�∈Mmax(q(�))

P
Y �|X� =W (�)

I
(
P

∗(�)
X , PY �Ŷ �|X�

)
. (243)

Proof: We should show that by setting PX� = P
∗(�)
X ,

the multiletter versions of the KKT conditions (170) and (171)

hold for P
∗(�)
Y Ŷ |X . Generalizing the conditions of (170)

and (171) to the multiletter case, and setting PY �Ŷ �|X� =

P
∗(�)
Y Ŷ |X , we should show that for all j, k1 ∈ X �×Y� there exist

multipliers λj,k1 such that the conditions below are fulfilled.
If we show this, then the lemma is proved because these are
precisely the conditions for the minimizer of (243).

1) When P
∗(�)
Y Ŷ |X(k1, k2|j) > 0 we must have,

∂

∂PY �Ŷ �|X�(k1, k2|j)
f(P ∗(�)

X , PY �Ŷ �|X�)
∣∣∣∣
P

Y �Ŷ �|X�=P
∗(�)
Y Ŷ |X

= λj,k1 . (244)

2) When P
∗(�)
Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(�)

q (k1, k2) we
must have that,

∂

∂PY �Ŷ �|X�(k1, k2|j)
f(P ∗(�)

X , PY �Ŷ �|X�)
∣∣∣∣
P

Y �Ŷ �|X�=P
∗(�)
Y Ŷ |X

≥ λj,k1 . (245)

Similarly to (167), the derivative in (244) and (245) is given
by,

∂

∂PY �Ŷ �|X�(k1, k2|j)
f(P ∗(�)

X , PY �Ŷ �|X�)
∣∣∣∣
P

Y �Ŷ �|X� =P
∗(�)
Y Ŷ |X

= P
∗(�)
X (j) log

P
∗(�)
Ŷ |X(k1|j)

Q
∗(�)
Ŷ

(k1)
(246)

which, by using that in PY �Ŷ �|X� = P
∗(�)
Y Ŷ |X and Q

∗(�)
Ŷ

are
product distributions, gives,

P
∗(�)
X (j) log

P
∗(�)
Ŷ |X(k1|j)

Q
∗(�)
Ŷ

(k1)

= P ∗
X(j1)P ∗

X(j2) · · ·P ∗
X(j�) ·

(
�∑

i=1

log
P ∗

Ŷ |X(k2,i|ji)

Q∗
Ŷ

(k2,i)

)
.

(247)

In order to show that there exist some coefficients λj,k1

satisfying both (244) and (245), we make a specific choice and
show that this choice satisfies both (244) and (245). To this
end, define

λj,k1 =

{
0

∏�
i=1 P ∗

X(ji) = 0∏�
i=1 P ∗

X(ji)
(∑�

i=1

λji,k1,i

P∗
X (ji)

) ∏�
i=1 P ∗

X(ji) �= 0

(248)

where λji,k1,i is the single-letter Lagrange multiplier corre-
sponding to ji and k1,i.

Excluding the cases where P ∗
X(j1)P ∗

X(j2) · · ·P ∗
X(j�) = 0

that from (247), (244) and (245) the KKT conditions clearly
hold, we have two cases

1) When P
∗(�)
Y Ŷ |X(j, k1, k2) > 0, then for all 1 ≤ i ≤ � we

must have P ∗
Y Ŷ |X(k1,i, k2,i|ji) > 0 and therefore, (170)
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is valid. We have to verify that this implies that (244) is
also valid. As a result,

∂

∂PY �Ŷ �|X�(k1, k2|j)
f(P ∗(�)

X , PY �Ŷ �|X�)
∣∣∣∣
P

Y �Ŷ �|X�=P
∗(�)
Y Ŷ |X

=
�∏

i=1

P ∗
X(ji)

(
�∑

i=1

log
P ∗

Ŷ |X(k2,i|ji)

Q∗
Ŷ

(k2,i)

)
(249)

=
�∏

i=1

P ∗
X(ji)

(
�∑

i=1

λji,k1,i

P ∗
X(ji)

)
(250)

= λj,k1 (251)

where (250) holds from the single-letter optimality
in (170).

2) When P
∗(�)
Y Ŷ |X(k1, k2|j) = 0 and j ∈ S(�)

q (k1, k2), as a

result of the Lemma 9, we have that S(�)
q (k1, k2) is a

product set, i.e. for all 1 ≤ i ≤ �,

ji ∈ Sq(k1,i, k2,i). (252)

Moreover, either P ∗
Y Ŷ |X(k1,i, k2,i|ji) > 0 where (170)

is satisfied or P ∗
Y Ŷ |X(k1,i, k2,i|ji) = 0 where (171) is

satisfied. As a result, with these assumptions in mind,
we should verify that (245) is valid. We have

∂

∂PY �Ŷ �|X�(k1, k2|j)
f(P ∗(�)

X , PY �Ŷ �|X�)
∣∣∣∣
P

Y �Ŷ �|X�=P
∗(�)
Y Ŷ |X

=
�∏

i=1

P ∗
X(ji)

(
�∑

i=1

log
P ∗

Ŷ |X(k2,i|ji)

Q∗
Ŷ

(k2,i)

)
(253)

≥
�∏

i=1

P ∗
X(ji)

(
�∑

i=1

λji,k1,i

P ∗
X(ji)

)
(254)

= λj,k1 (255)

where (254) is true because of the single-letter optimality
in (170) and (171).

APPENDIX A

In this appendix we provide the proof of Theorem 2.
Without loss of generality, we assume that the sequence{
q(1, k) − q(2, k)

}K

k=1
is non-decreasing, i.e. for k1 ≤ k2,

q(1, k1) − q(2, k1) ≤ q(1, k2) − q(2, k2). (256)

We can assume this, since it is always possible to relabel
the output alphabet such that this property is fulfilled. This
assumption simplifies the evaluation of the sets S(·, ·). For
k1 = k2 we have S(k1, k2) = {1, 2}. Moreover, when k1 < k2

from (256) and Definition 1, we have that 1 ∈ S(k1, k2) and
2 ∈ S(k2, k1).

We prove a slightly stronger result. In particular, we prove
that the condition Cq(W ) = C(W ) implies that sequences{

P �
X(1) log

W (k|1)
Q̂Ŷ (k)

}K

k=1
,
{
− P �

X(2) log
W (k|2)
Q�

Ŷ
(k)

}K

k=1

(257)

both should have the same order as the decoding metric
difference sequence {q(1, k)−q(2, k)}K

k=1, where the notation
P �

X refers to the capacity-achieving distribution of W ; Q�

denotes the corresponding output distribution.
Assume that Cq(W ) = C(W ). Therefore, P �

X , PY Ŷ |X =
PY Y |X must be a saddlepoint of (153). As a result, the KKT
conditions in (170) and (171) must hold. Observe that

PY Y |X(k1, k2|j) =

{
W (k1|j) k1 = k2

0 k1 �= k2.
(258)

Therefore, combining the KKT conditions in (170) and (171)
we obtain,

1) If k1 = k2, for both j = 1, 2 we have

P �
X(j) log

W (k1|j)
Q̂Y (k1)

= λj,k1 (259)

2) If k1 < k2 we know 1 ∈ S(k1, k2) and 2 ∈ S(k2, k1),
therefore,

P �
X(1) log

W (k2|1)
Q�

Y (k2)
≥ λ1,k1 (260)

P �
X(2) log

W (k1|2)
Q�

Y (k1)
≥ λ2,k2 . (261)

As a result, if k1 < k2

P �
X(1) log

W (k2|1)
Q�

Y (k2)
≥ λ1,k1 = P �

X(1) log
W (k1|1)
Q�

Y (k1)
(262)

P �
X(2) log

W (k1|2)
Q�

Y (k1)
≥ λ2,k2 = P �

X(2) log
W (k2|2)
Q�

Y (k2)
. (263)

Therefore, we get that
{

P �
X(1) log W (k|1)

Q�
Y (k)

}K

k=1
and

−
{
P �

X(2) log W (k|2)
Q�

Y (k)

}K

k=1
are both non-decreasing sequences

and so is any linear combination of them with positive
coefficients. Therefore, since

log W (k|1) − log W (k|2) =
1

P �
X(1)

(
P �

X(1) log
W (k|1)
Q�

Y (k)

)
− 1

P �
X(2)

(
P �

X(2) log
W (k|2)
Q�

Y (k)

)
(264)

we conclude that the sequence {logW (k|1)−log W (k|2)}K
k=1

is a non-decreasing sequence.

APPENDIX B

This section is addresses the choice of � in proof of the
main theorem in Section VII. Let f : A → R be a continuous
function and A be a compact set. Then this function is
uniformly continuous. We apply this fact to entropy function
H : ΔJ → R where ΔJ = {x ∈ R

J |xi ≥ 0, i = 1, 2, . . . , J}
is the J-dimensional simplex. Therefore, for any δ > 0 there
exists an � > 0 such that for any p1, p2 ∈ ΔJ that are �-close
i.e. |p1 − p2|∞ ≤ � we have∣∣H(p1) − H(p2)

∣∣ ≤ δ. (265)
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Let V be matrix of a conditional distribution and
V 1, V 2, . . . , V J be rows of V . Consider any type p, any
conditional distribution matrix V̂ with rows V̂ 1, V̂ 2, . . . , V̂ J

and let q, q̂ be output distributions corresponding to input type
p and channels V , V̂ , respectively. Then, we have∣∣q − q̂

∣∣
∞ ≤

∣∣V − V̂
∣∣
∞ (266)∣∣V i − V̂ i

∣∣
∞ ≤ |V − V̂

∣∣
∞. (267)

As a result, if
∣∣V − V̂

∣∣
∞ ≤ � we get∣∣H(q) − H(q̂)

∣∣
∞ ≤ δ (268)∣∣H(V i) − H(V̂ i)
∣∣ ≤ δ. (269)

As for H(V |p) we have

H(V |p) =
J∑

j=1

p(j)H(V j), (270)

and thus,

∣∣H(V |p) − H(V̂ |p)
∣∣
∞ ≤

J∑
j=1

p(i)
∣∣H(V j) − H(V̂ j)

∣∣
∞

(271)

≤ δ. (272)

Setting δ = σ
4 gives the result.

APPENDIX C

In this appendix we discuss the case where some entries
of the decoding metric matrix are −∞. When computing the
set Sq(k1, k2) we compare expressions that contain −∞ using
the following rules:

1) −∞− (−∞) = −∞− (−∞) is a tie
2) a − (−∞) > −∞− (−∞)
3) −∞− (−∞) > −∞− a
4) a − (−∞) > b and −∞− a < b
5) −∞−a < −∞− b if a > b, and −∞−a = −∞− b if

a = b
6) a − (−∞) < b − (−∞) if a < b, and a − (−∞) =

b − (−∞) if a = b
7) 0 · (−∞) = 0

where a, b ∈ R.
As we show next, Lemma 3 remains true for this case.

Observe that in the decomposition

q(x, y) =
∑
j,k

p̂x,y(j, k)q(j, k) (273)

0 · (−∞) = 0 according to rule 7). With assumptions of
Lemma 3 we have that,

q(x̂, ŷ) − q(x̂, y)

= n
∑

j,k1,k2

p̂x̂yŷ(j, k1, k2)
(
q(j, k2) − q(j, k1)

)
(274)

≤ n
∑
k1,k2

(∑
j

p̂x̂yŷ(j, k1, k2)
)

max
j′

(
q(j�, k2) − q(j�, k1)

)
(275)

= n
∑
k1,k2

(∑
j

p̂xyŷ(j, k1, k2)
)

max
j′

(
q(j�, k2) − q(j�, k1)

)
(276)

= n
∑
k1,k2

∑
j

p̂xyŷ(j, k1, k2)
(
q(j, k2) − q(j, k1)

)
(277)

= q(x, ŷ) − q(x, y) (278)

where in (274) when upperbounding q(j, k2) − q(j, k1) with
maxj′

(
q(j�, k2) − q(j�, k1)

)
if neither of q(j, k2), q(j, k1) is

equal to −∞ the argument remains valid. Moreover, rules 1),
5) and 6) imply that if q(j, k1) = −∞ in (274) then
q(j�, k1) = −∞ for maximizing j�. Therefore, if q(x̂, y) =
−∞ then q(x, y) = −∞. Finally, in (274) if q(j, k2) = −∞
and q(j, k1) is finite, then q(j�, k1) in (275) for maximizing j�

is also finite and q(j�, k1) ≤ q(j, k1). As a result, q(x, y) ≤
q(x̂, y).
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