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Abstract—This work studies the deviations of the error
exponent of the constant composition code ensemble around its
expectation, known as the error exponent of the typical random
code (TRC). In particular, it is shown that the probability of
randomly drawing a codebook whose error exponent is smaller
than the TRC exponent is exponentially small; upper and lower
bounds for this exponent are given, which coincide in some cases.
In addition, the probability of randomly drawing a codebook
whose error exponent is larger than the TRC exponent is shown
to be double—exponentially small; upper and lower bounds to the
double-exponential exponent are given. The results suggest that
codebooks whose error exponent is larger than the error exponent
of the TRC are extremely rare. The key ingredient in the proofs
is a new large deviations result of type class enumerators with
dependent variables.

Index Terms—Error exponent, expurgated exponent, large
deviations, typical random code.

I. INTRODUCTION

ANDOM coding is the most common method to show

that the probability of error vanishes for rates below
the channel capacity. In 1955, Feinstein [1] proved that, for
a sequence of codes of fixed rate and increasing length,
the probability of error decays to zero exponentially with
the length of the codes, provided that the rate of the code
is below the mutual information of the channel. In the same
year, Elias [2] derived the random coding and sphere—packing
bounds and observed that they exponentially coincide at high
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rates, for the cases of the binary symmetric channel (BSC)
and the binary erasure channel (BEC). Fano [3] derived the
random coding exponent, namely,

E(R) = lim {—;logE[P(C)]}, M

where the expectation is with respect to (w.r.t.) a given ensem-
ble of codes, for the general discrete memoryless channel
(DMCQ). In 1965, Gallager [4] derived E,(R) in a much simpler
way and improved on E.(R) at low rates by the idea of
expurgation.

In random coding analysis, the code is selected at random
and remains fixed, and thus, it seems reasonable to study the
performance in terms of error exponent of the very chosen
code, rather than considering the exponent of the averaged
probability of error, as in F,(R). Therefore, it is natural to
ask what would be the error exponent associated with the
typical randomly selected code. The error exponent of the
typical random code (TRC) is defined as

E.(R) = lim {-ZE [log P(Cn)]} - )
We find the exponent of the TRC to be the more relevant per-
formance metric as it captures the true exponential behavior of
the probability of error, as opposed to the random coding error
exponent, which is dominated by the relatively poor codes of
the ensemble, rather than the channel noise, at relatively low
coding rates.

To the best of our knowledge, not much is known on
typical random codes. In [5], Barg and Forney considered
typical random codes with independently and identically dis-
tributed codewords for the BSC with maximum-likelihood
(ML) decoding. They also considered typical linear codes. It
was shown that at a certain range of low rates, E,.(R) lies
between F,(R) and the expurgated exponent, E, (R). In [6]
Nazari er al. provided bounds on the error exponent of the
TRC for both DMCs and multiple—access channels. In a recent
article [7], an exact single—letter expression has been derived
for the error exponent of typical, random, constant compo-
sition codes, over DMCs, and a wide class of (stochastic)
decoders, collectively referred to as the generalized likelihood
decoder (GLD), which includes the ML decoder as a special
case. For such decoders, the probability of deciding on a
given message is proportional to a general exponential function
of the joint empirical distribution of the codeword and the
received channel output vector. Recently, Merhav has studied
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error exponents of TRCs for the colored Gaussian channel [8],
typical random trellis codes [9], and a Lagrange—dual lower
bound to the TRC exponent [10].

Note that the TRC exponent can be viewed as the limit of
the expectation of the random variable

3)

where P.(C,) is the error probability of a given code C,,
governed by the randomness of the codebook C,. Having
defined this random variable, it is interesting to study, not
only its expectation, but also other, more refined, quantities
associated with its probability distribution. One of them is
the tail behavior, i.e., the large deviations (LD) rate functions.
In particular, it is partially implied! from [7], that E(C,)
concentrates around its expectation, i.e., the error exponent
E..(R). In this work we prove that E(C,,) indeed concentrates
around E,.(R).

In this paper we are interested in probabilities of large
fluctuations around FE,.(R). More specifically, we investigate
the probability of randomly choosing a bad codebook, i.e., a
codebook with a relatively small value of E(C,,). On the other
hand, the probability of randomly drawing a good codebook,
i.e., a codebook with a relatively large value of E(C,) is
of interest as well, since obtaining tight LD bounds is an
alternative method to prove upper or lower bounds on the
channel reliability function, a long—standing problem.

To the best of our knowledge, the only known bounds
on the probability of drawing codebooks with relatively
low error exponents are given in [11, Appendix III]. It is
proved in [11] that P{E(C,,) < E.(R)} is upper bounded by
exp{—exp{n(R — E,(R))}}, as long as R > E,(R), while
the entire range of relatively low rates, namely R < FE,(R),
was hardly considered in [11], and is one of the main topics
in the current work. Furthermore, in this paper, we study the
deviations of E(C,,) w.r.t. its actual expected value E,.(R), and
not as in [11], in which considered deviations w.r.t. E,(R).

Accordingly, the main purpose of this paper is to study the
probabilistic behavior of the tails of E(C,,), i.e., to characterize
its large deviations properties. For a given Ey < E.(R),
we assess the probability P {E(C,,) < Ey} and provide expo-
nentially small lower and upper bounds on it, which proves
that bad codebooks are rare. More refined questions con-
cerning the lower tail are as follows. Does the probability
P{E(C,) < Ey} tend to zero with a finite exponent in the
entire range [0, E,.(R))? If not, what is the range of FEj
for which P{E(C,) < Ey} decays faster than exponentially?
Indeed, we prove that a phase transition occurs in the behav-
ior of this probability, i.e., at some point below FE.,. (R),
we observe an abrupt change between an ordinary exponential
decay to a super—exponential decay. In addition, we consider
the probability P {E(C,,) > Ey}, for Ey > E,.(R), and derive
double—exponentially small lower and upper bounds on it.
We find the largest value Ey, for which P{E(C,,) > Ey} is
strictly positive, thereby proving the existence of exceptionally
good codebooks.

E(Cn) = —5 log P.(Cy),

'More specifically, for every € > 0, P{E(Cp) < Eu(R) -+ €} converges to
one exponentially fast as n — oo.
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The remaining part of the paper is organized as follows. In
Section 2, we establish notation conventions. In Section 3,
we formalize the model, the decoder, LD quantities, and
provide some preliminaries. In Section 4, we summarize and
discuss the main results, and provide numerical example for
the binary z—channel. Sections 5, 6 and 7 include the proofs
of our main theorems.

II. NOTATION CONVENTIONS

Throughout the paper, random variables will be denoted by
capital letters, realizations will be denoted by the correspond-
ing lower case letters, and their alphabets in calligraphic font.
Random vectors and their realizations will be denoted, respec-
tively, by boldfaced capital and lower case letters. Their alpha-
bets will be superscripted by their dimensions. For a generic
joint distribution Qxy = {Qxv (z,y),z € X,y € Y}, which
will often be abbreviated by (), information measures will be
denoted in the conventional manner, but with a subscript @,
that is, Io(X;Y) is the mutual information between X and
Y, and similarly for other quantities. Logarithms are taken to
the natural base. The probability of an event £ will be denoted
by P{£}, and the expectation operator will be denoted by E[].
The indicator function of an event £ will be denoted by Z{£}.
The notation [t]+ will stand for max{0,¢}.

For two positive sequences, {a,} and {b,}, the notation
an, = b, will stand for equality in the exponential scale,
that is, lim,, .~ (1/n)log (a,/b,) = 0. Similarly, a,, < b,
means that limsup,, . (1/n)log(a,/b,) < 0, and so on.
Accordingly, the notation a,, = e~ "> means that a,, decays
at a super—exponential rate (e.g. double—exponentially).

By the same token, for two positive sequences, {a,} and
{bn}, whose elements are both smaller than one (for all large
enough n), the notation a,, = b,, will stand for equality in the
double—exponential scale, that is,

1 log by,
Tim —log( %8 ) —-0 )
n—oo n log a,
Similarly, a,, % b, means that
1 log by,
lim sup — log ( 08 > <0, (&)
n—oo M log a.,
and a,, E b,, stands for
1 1
liminf - log ( 08 b”) >0 6)
n—oo N log a,,

The empirical distribution of a sequence € X", which
will be denoted by 1593, is the vector of relative frequencies,
P, (x), of each symbol 2 € X in x. The joint empirical dis-
tribution of a pair of sequences, denoted by Pwy, is similarly
defined. The type class of Qx, denoted 7 (Qx), is the set
of all vectors x € X" with Pm = @x. In the same spirit,
the joint type class of Qxvy, denoted 7(Qxy), is the set of
all pairs of sequences (x,y) € X™ x V" with Pwy =Qxy.

Throughout the paper, we will make a frequent use of the
fact that

kn

2 ()= g )

@)
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as long as {a, (i)} are nonnegative exponential functions of
an integer n and k,, = 1. This exponential equivalence will be
termed henceforth the summation—maximization equivalence
(SME). The sequence k,, will represent the number of type
classes possible for a given block length n, which is polyno-
mial in n.

III. PROBLEM FORMULATION

Consider a DMC W = {W(y|z), = € X, y € YV},
where X and ) are the finite input and output alpha-
bets, respectively. When the channel is fed with a sequence

x = (21,...,2,) € X", it produces y = (y1,...,Yn) € Y"
according to
n
W(ylz) = [[W(yila). ®)
t=1
Let C,, be a codebook, i.e., a collection {xo,x1,...,Tp—1}

of M = e™® codewords, n being the block—length and R
the coding rate in nats per channel use. When the transmitter
wishes to convey a message m € {0,1,..., M — 1}, it feeds
the channel with x,,. We assume that messages are chosen
with equal probability. We consider the ensemble of constant
composition codes: for a given distribution Qx over X, all
vectors in C,, are uniformly and independently drawn from
the type class 7 (Qx). As in [7], [12], we consider here the
GLD, which is a stochastic decoder, that chooses the estimated
message m according to the following posterior probability
mass function, induced by the channel output y:

exp{ng( wmy)} 9
EM/ Oexp{ng( T /y)}7 )

where Py, ,, is the empirical distribution of (z,,,y), and g(-)
is a given continuous, real-valued functional of this empirical
distribution. The GLD provides a unified framework which
covers several important special cases, e.g., matched likelihood
decoding, mismatched decoding, ML decoding, and universal
decoding (similarly to the a-decoders described in [13]).
In particular, we recover the ML decoder by choosing the
decoding metric

9(Qxy) =8> Qxy(z,y)log W (ylz),

reX yey

i1} -

(10)

and letting / — oo. A more detailed discussion is given
n [12].

The probability of error, associated with a given code C,
and the GLD, is given by

F(Cn)

1 M-—1

m=0 yeyn

Em,imexp{ng(f) )}
S0 exp{ng(Pe,y)}
(11)

For the constant composition ensemble, Merhav [7] has
derived a single—letter expression for

Fu(R) = lim {~1E [log P.(C.)]}

12)

6637

In order to present this expression, we define first a few

quantities. Define the set Q(Qx) = {@xx' : @x = Qx}
and

(R, Qy) = Qmergggxm){g(@;zy) —Io(X;Y)} + R,

(13)
where S(QXa QY) = {Qx\y (X Y) <R, Q QX}H
as well as
NQxx/,R) = omin {DQyxIW|Qx) + Io(X;YX)
Y|XXx/

a(R,Qy)} — 9(Qxv)]+},
(14)

+ [max{g(Qxv),

where D(Qy |x||W|Qx) is the conditional divergence
between Qy|x and W, averaged by Qx:

D(Qyx[[W|Qx)

= Z Qx(x Z Qy|x(ylz)log

zeX yeY

Qv x (y|z)
Wl P

The TRC error exponent is given by [7]
E.(R)

{T(@xx/, R) + Io(X; X') — R}.

= min
{Q(Qx): Io(X;X')<2R}
(16)

In the sequel, we prove that the exponent F,.(R) is the exact
value around which the random variable E(C,,) concentrates,
as was partially implied from the proof in [7, Sec. 5.2]. The
expurgated exponent E, (R), proved in [12], has exactly the
same expression, but with the minimization constraint in (16)
Io(X;X") < 2R replaced by Io(X; X') < R. In case of ML
decoding, define

aRQv) =, max o EoleeW(IX)] a7
and the set
AR) ={Qxyix : Io(X;X) <2R, Qx' = Qx,
Eq[log W(Y[X")] > max {Eq[log W (Y|X)],a(R,Qy)}}.
(18)

Then, (16) particularizes to [7, Sec. 4]
EML(R)

tre
= min

D w +Io(X,Y:; X') — R}.
QX/Y‘XGA(R){ (QvxIW[Qx) + Ig( R

19)

We are interested in the lower and the upper tails of the
distribution of E(C,,). The first is

P{E(C,) < Eo}, Eo < Ew(R), (20)

2Note that the expressions of a(R, Qv ), T'(Qxx/, R), and Ey.(R) are
defined in [7] using supremum and infimum. Since all the objective functions
involved in the optimization problems defining these terms are continuous and
the corresponding feasible sets are compact, these supremum and infimum are
in fact achieved by a maxima and minima.
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which is the probability of drawing a bad codebook. The sec-
ond one is

P{E(CYL) 2 E0}7 EO > Elrc(R)) (21)

which is the probability of drawing a good codebook. Finding
exact expressions for (20) and (21) appears to be difficult.
We derive lower and upper bounds on both (20) and (21).

IV. MAIN RESULTS
A. The Lower Tail

In order to present the error exponents of the lower tail,
we define the quantities:

B(R,Qy) = {9(Qgy)+[R— Io(X;Y)]4 ),
(22)

AQxx,R) = min {DQyix[IWIQx) + Lo(X5Y|X)

max
{Qxzy: Qx=Qx}

+B(R,Qy) — 9(Qxv)}, (23)

and,
V(R, Ey,Qxx') =T'(Qxx,R)+ R — Ey, (24)
E(R, Eo,Qxx') = A(@xx',R) + R — Ey. (25)

Also, define the sets

L(R,Ey) ={Qxx € QQx):
2R — Io(X; X))+ > W(R, Ey, Qxx)}, (26)

M(R, Ep) = {Qxx € Q(@x):
2R — Io(X; X4+ > E(R, Eo, Qxx1)}, (27)

and the error exponent functions

E™(R, Eo) = i Io(X;X')—2R]., (28
W (R, Eo) Qxxglg(lma)[cz( ) 4, (28)
E)(R,Eo)=  min  [Ig(X;X') = 2R]+. (29)

QXXIEM(RvEO)

Our first result in this section is the following theorem, which
is proved in Section V.

Theorem 1: Consider the ensemble of random constant
composition codes C,, of rate R and composition @) x. Then,

P{E(C,) < Eo} < exp{—n- E*(R, E)}.  (30)

Also,

P{E(C,) < Fo} = exp{—n- E"(R, Bo)}.  (31)

An expression for the special case of ML decoding can
be derived, but turns out to be relatively cumbersome, since
it consists of a nested optimization problem. Instead, let
us recall the result of [14] (see also [15]), which asserts
that the probability of error for ordinary likelihood decoding
([12, eq. (3)]) is at most twice the error probability of ML
decoding. Hence, it is enough to use the decoding metric
9(Q) = Eqg[log W (Y| X)] (here and in all of the results later
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on) in order to study the LD rate functions under the ML
decoder. For example, (13) particularizes to

a(R, Qy)
{EqllogW(Y|X)] — Io(X;Y)} + R,

= max
Qx|y€S(Qx.Qv)

(32)

and similarly for T'(Qxx/, R), B(R,Qy), and A(Qxx/, R).

We now provide some intuition concerning the term
I'(Qxx, R), which is encountered numerous times in this
work. For the true codeword x,, and a competing codeword

Xy, the term I'(Py, . ,, R) is, in fact, the exponential rate
of decay of the sum

S Wiyle,)

yeyr
exp {—n - [max{g(Pe,y), (R, )} = 9P,y |
(33)

where g(Py,,y) and g(Py, ) are the respective scores of the
true and the competing codewords, and where «(R, Py) rep-
resents the highest score among all other incorrect codewords
in the codebook®. When averaged over all possible channel
outputs, this sum yields the overall probability that m' is
the decoded message. It follows by the method of types that
for a given empirical distribution pwmwm,, there exist some
Qy|xx, such that the most likely channel outputs are those
in 7(Qy|xx'|Tm, ®m/), and they have the dominant tone in
this error event.

In order to characterize the behavior of the error exponent
functions (28) and (29), let us first define

E(R)

{Q(@x): gl%%;xz)SQR}{ (@xx', R) ol ) }
(34)

The following proposition is proved in Appendix D.
Proposition 1: E*(R, Ey) and E"(R, Ey) have the follow-
ing properties:
1) For fixed R, E™*(R, Ey) and E"(R, Ey) are decreasing
in Eo.
2) E*(R,Ep) > 0 if and only if Ey < E,.(R).
3) E"(R, Ey) > 0 if and only if Fy < E(R).
4) E*(R,Ep) = oo for any Ey < E§"(R), where

By (R)
= min {P(Quxx, B) - 2R - Ig(X: X4} + R
(35)

Note that E(R) is defined similarly as E,.(R), with
A(Qxx:, R) replacing T'(Qxx/,R). Generally, E(R) >
E..(R), but in some special cases, e.g. the z—channel and the
BEC, it can be easily proved that E(R) = E,.(R), as can be
seen in Fig. 3 below. Moreover, since E!*(R, Ey) is defined

similarly as EP(R, Ep), also with A(Qxxs,R) replacing

3 Also find a more comprehensive discussion on this point in [7, Sec. 4].
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Fig. 1. Various exponents for the z—channel with crossover probability 0.001.

I'(@xxs, R), it turns out that for the same special cases,
E*(R, Ey) = EP(R, Ey). Hence, we conclude that there exist
channels for which P {E(C,,) < Ej} has an exponentially tight
expression.

Proposition 1 answers the questions we raised in the
Introduction. First, it asserts that drawing a codebook for
which E(C,) is strictly below the TRC exponent has an
exponentially vanishing probability. This implies that only
for a small fraction of constant composition codes, E(C,)
is significantly lower than the TRC error exponent. Second,
the probability that E(C,,) falls in the range (Eg"(R), Fy.(R))
tends to zero with a finite exponent, but for £y € [0, E§"(R)),
the probability of E(C,,) < Ej converges to zero faster than
exponentially; these codebooks are extremely rare.

We next describe the behavior of Eg"(R). Denote by
Q% x (R) the minimizer of (35) at rate R, and let R* be
the maximal rate for which 2R < I-(g)(X; X’) holds. On
the one hand, for any R € [0, R*], the operator [-]1 in (35) is
active and Ef"(R) is given by

Eg"(R) = I'Qxx/,R)+ R, (36)

min
{Q(Qx): 2RI (X;X7)}
which is a monotonically increasing function. On the other
hand, if R > R*, the operator []; in (35) is neutral
and Ej"(R) coincides with the TRC error exponent E,.(R).
Fig. 1 illustrates the error exponents, as well as Ej"(R),
for the binary z—channel with crossover parameter 0.001,
the symmetric input distribution, Qx = (1/2,1/2), and the
ML decoder. The highest transmission rate is R = 0.685
[nats/channel use]. As can be seen in Fig. 1, the exponent
E..(R) lies between F,(R) and E,,(R), a fact that was already
asserted for a general DMC in [7]. Moreover, E,.(R) is
strictly higher than FE,(R) for relatively low coding rates,
and above R = 0.279 [nats/channel use], they coincide,
i.e., the random coding error exponent provides the true
exponential behavior of the typical codes in the ensemble.
As for Ej"(R), we observe the following phenomena: First,
note that E5"(0) = 0, which means that all codebooks that
have a sub—exponential number of codewords are drawn with

6639

a finite exponent. Second, in the range (0, R*), E5"(R) is
linear and divides the range [0, E,.(R)) into two intervals;
in (E§"(R), E.(R)) — an exponential decay with a finite
exponent, and in [0, E§"(R)) — a super—exponential decay.
Third, for rates above R*, the curves E§"(R), E..(R), and
E.(R) are all equal. We conclude that for relatively high rates,
P{E(C,) < E..(R)} converges to zero super—exponentially
fast, a fact that was already proved in [11, Th. 5].

In order to gain some intuitive insight behind the various
types of behavior of E(R, Ey), it is instructive to examine
the properties of the type class enumerators,

M—-1
N@Qxx)E Y Y T{(Xm, Xm) € T(Qxx)},
m=0 m/#m

(37)

which play a pivotal role in the proofs of the main results of
the paper. The summation (37) contains M (M — 1) = e"?E
terms. Borrowing from the terminology of binomial random
variables, we refer to it as the number of trials associated
with N(Qxx-). The expectation of each binary random
variable in (37) is given by P{(X , X ) € T(Qxx/)} =
e~ (X3X") \which is referred to as the success probability.
Unlike its one—dimensional counterpart [16]- [18], N(Qx x’)
is not a binomial random variable, since its terms are not
mutually independent.

We distinguish between two kinds of joint compositions.
On the one hand, we have the joint types ()x x+ for which
Io(X; X') < 2R, i.e., the exponential rate of the number of
trials is higher than the negative exponential rate of the suc-
cess probability. Thus, with overwhelmingly high probability,
the respective N (Qxx/) will concentrate around its mean,
exp{n(2R — Io(X; X"))}. Such compositions are referred to
as typically populated (TP) type classes. On the other hand,
for QXX/ with IQ(X;X/) > 2R, N(QXX/) = 0 with hlgh
probability. These compositions are referred to as the typically
empty (TE) type classes.

For Ey € (E§"(R), E.(R)), let us denote the minimizer of
E*(R, Ey) by Q% x.. Then, the dominant error event is due
to pairs of codewords with joint empirical composition Q% .
In this range of exponents, all TP type classes are populated,
as well as all TE type classes with I (X; X') < Io-(X; X’).
The rest of the TE type classes, those with higher value of
Io(X; X'), are still empty (see Fig. 2b). These are the joint
type classes of the “closest” pairs of sequences in X", in the
sense of high empirical mutual information.

When Ey = Ej"(R), the constraint set L(R, Ey) becomes
empty, all TE type classes become populated (see Fig. 2a) and
E" (R, Ey) jumps to infinity. In some sense, the curve Ef™(R)
exhibits a phase transition. When Ey > Ej"(R), the minimum
“distance” between pairs of codewords is still positive, but
when Ey < E§"(R), this minimum distance vanishes.

For Ey < Ej§"(R), the super—exponential behavior of
P{E(C,) < Ey} follows from the result of Lemma 5 in
Appendix B, which states that P{N(Qxx/) > "} tends to
zero faster than exponentially for any TE type class. Now, if all
TE type classes are populated by exponentially many pairs,
then codebooks with exponentially many identical codewords
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(c) Around the E..(R)

@) Eo € (Ew(R), Ex(R))

Fig. 2. Typical populations for different Fqy values. The center is the
true codeword and each concentric circle around it represents a conditional
type class. The radii of the concentric circles represent distances between
codewords, which are measured by the empirical conditional entropy (also
proportional to the negative empirical mutual information), induced by the
joint composition of the codewords. Dots denote the TP type classes and
circle—dots represent the TE type classes. TP type classes are the sets of
relatively distant codewords; they include all joint compositions @ x x+ with
Io(X; X’) < 2R. Red dots/circle—dots mean empty type classes. For larger
FEg values, the minimum distance between codewords increases.

also exist in the range of these low exponents. Consider
the set D, = {C,} of codebooks, such that in each one
of them, every TE type class is populated by exponentially
many pairs of codewords. Obviously, E(C,) < E§"(R) for
every C, € D, and it turns out that this set has, in fact,
a double—exponentially small probability. To see why this is
true, consider the following upper bound, which only requires
from some e"¢ codewords to be identical:

P{C, € D} < (Z:R> : (W@)l)
° (e"R> Cexp {—nHo(X)e™}.  (39)

ene

(38)

The binomial coefficient is upper-bounded as

enR
( ) < exp{nRe"}, (40)
ene

hence,

P{C, € D,} < exp {—n(Ho(X) — R)e"}, (41)

which decays double—exponentially fast, since R <
Io(X;Y) < Ho(X).
At last, we prove that a concentration property holds:
Proposition 2: E(C,) concentrates at E,(R) as n — oo.
Proof: On the one hand, it follows by Theorem 1 and
Proposition 1 that for every € > 0, P{E(C,,) < E,.(R)—e}—0,
exponentially fast, as n — oo. On the other hand, the proof in
[7, Sec. 5.2] implies that for every ¢ > 0, P{E(C,,) < E..(R)+
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€} — 1, also exponentially fast, as n — oco. Combining these
two facts, it follows that E(C,,) concentrates at F, (R).

B. The Upper Tail

In this subsection, we study the probability
P{E(C,,) > Eo}. On the one hand, we are interested in
lower-bounding the probability P{E(C,,) > Ey}, such that
we can assure the existence of good codebooks. On the other
hand, we would also like to provide a tight upper bound on
this probability, in order to prove that above some critical
exponent value, codebooks cease to exist. We begin with a
few definitions. Let us define the sets

V(R, Ey) = {Qxx € Q(Qx): Io(X;X') <2R,

AQxx/, R)+ Io(X; X') — R< Ep}, (42)
UR, Ey) = {Qxx € QQx): Io(X;X') <2R,
N(Qxx,R)+1o(X;X') = R< Ep}, (43)
and the error exponent functions
E*(R,Ey) = QXX/%%?R,E[)) min{2R — Io(X; X'),
Eo— MQxx/, R) — Io(X; X') + R, R}, (44)
E"(R, Ey) = max ){2R —Io(X; X")}. (45)

Qxx'€EU(R,Eq

The main result in this subsection is the following theorem.
Theorem 2: Consider the ensemble of random constant
composition codes C,, of rate R and composition ) x. Then,

P{E(Cy) > Eo} < exp{—exp{n-E*(R,Eo)}}.  (46)
If By € (E,.(R), Ev(R)), then
P{E(C,) > Eo} > exp{—exp{n-E*(R,Eo)}}. (47)

The proofs of (46) and (47) appear in Sections VI and VII,
respectively. The double—exponential behavior indicates that
the relative number of very good codebooks is extremely
small.

The restriction to (E,(R), E.(R)) in the lower bound of
Theorem 2 stems from the technical condition of [19, Th. 9],
which is equivalent to the one found in the Lovasz local
lemma [21]. If a large number of events are all independent
and each has probability less than 1, then there is a positive
probability that none of the events will occur. The Lovész
local lemma allows one to slightly relax the independence
condition, as long as the events are only “weakly” dependent in
some sense. More specifically, referring to the type class enu-
merator N(Qxx), it turns out that if Io(X;X’) > R, then
the binary random variables composing N(Q xx-) are only
weakly dependent, and the probability P{N(Qxx/) = 0},
which appears in the derivation of the lower bound of
Theorem 2, can be lower-bounded using the Lovdsz local
lemma by exp{—exp{n(2R — Io(X;X’))}}. Otherwise,
when Io(X; X’) < R, this probability is very small, but it
cannot be lower-bounded by the Lovasz local lemma, since
its condition is not met. In our setting, the condition of the
local lemma is met, as long as the number of codewords is
not too high, which results in an upper bound on Ey, given
by E.(R).
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In order to characterize the behavior of the error exponent
functions (44) and (45), we provide the following proposition,
which is proved in Appendix E.

Proposition 3: E*(R, Ey) and E®(R, Ey) have the follow-
ing properties:

1) For fixed R, E*(R, Ey) and E*(R, Ey) are increasing

in E().

2) E*(R,Ep) > 0 if and only if Ey > E,.(R).

3) E™(R, Ep) > 0 if and only if Ey > E(R).

Recall that for the typical code, i.e., any code with
E(Cn) =~ E.(R), all TP type classes are populated and all
TE type classes are empty (see Fig. 2c¢). Now, for any Ej in
the range (E,.(R), E«(R)), all TE type classes are still empty,
but now, also all TP type classes that are associated with the
set U(R, Ep) are also empty (see Fig. 2d). The dominant error
event in these codebooks is caused by relatively distant pairs
of codewords that have a joint composition (% y,, which is
the maximizer of (45). We conclude that F,.(R) exhibits a
phase transition in the Ey axis. Below the E,.(R) curve, TE
type classes become populated, and above it, TP type classes
become empty.

When FEj reaches E, (R), the set U(R, E.,) is a subset of
UR) = {Qxx € Q(Qx): R < Io(X;X’) < 2R}, and

thus
E® E,) = 2R — Ip(X: X'’ 4
(1, E) Mgggéx){R (X5 XN} (48)
<max{2R—Io(X; X )} =R.  (49)
U(R)

It means that the lower bound of Theorem 2 is at least as
high as the probability of any codebook in the ensemble,
given by = exp{—nHg(X)e™®}, which implies the existence
of codebooks with E(C,) ~ E,(R). We have the following
corollary, which is proved in Appendix F.

Corollary 1: If Ey < E,(R), then there exists at least one
code with E(C,,) > Ep.

Fig. 3 illustrates the upper tail exponents (44) and (45) for
the binary z—channel with crossover parameter 0.001, rate R =
0.2, the symmetric input distribution, Qx = (1/2,1/2), and
the ML decoder. Due to the restriction in the lower bound
of Theorem 2, note that E*(R, Ey) is applicable as long as
0 < E*(R,Ey) < R, while E*(R, Ey) is applicable for any
Fy, but is truncated to R for relatively high Ey. The lowest
Ey for which E*(R, Ey) = R is approximately 0.873, which
is strictly lower than the straight-line bound E,(R) ~ 1.122,
but the truncation* to R prevents® us from deducing a tighter
upper bound to the reliability function. In the entire range
(Ew(R), EL(R)), both E*(R, Ey) and E™(R, Ey) are strictly
positive, such that the lower and the upper bounds on the
probability of the upper tail are double—exponentially small.

4We conjecture that this truncation to R is artificial, and can be removed
by deriving tighter LD bounds. More specifically, a tighter version of Fact 1
(Appendix A), which may lead to a tighter result in Lemma 2 (Appendix B),
which, in turn, may provide a tighter upper bound in Theorem 2.

SHad the double—exponential rate of the upper bound strictly bigger than
R, we were able to conclude the absentee of codebooks with error exponents
above some threshold.
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Fig. 3. Upper tail double—exponential rate functions for the z—channel with
crossover probability 0.001 and R = 0.2.

V. PROOF OF THEOREM 1
A. An Upper Bound on the Probability of the Lower Tail

Let C, be a constant composition code of rate R and
blocklength n and let Ey > 0 be given. Then,

1
P{—ElogPe(Cn) < EO}

M—1

—E{ Y S Y Wilen)
m=0 m/#m yeYm

' exp{ng(Pm,,,:/y)} > n-Eo}, (50)
Yomexping(Pe.y)}

Let

Zm(y) = (51)

Z exp{ng( Awmy)}a

m#m

fix € > 0 arbitrarily small, and for every y € )", define the
set

B.(m,y) = {Cn i Zm(y) < exp{na(R - e,Py)}} . (52)

Following the result of [12, Appendix B], we know that,
considering the ensemble of randomly selected constant com-

position codes of type Qx,
P{B.(m,y)} < exp{—e™ + ne + 1}, (53)

for every m € {0,1, ...
union bound,

P U U Be(m,y)

,M —1} and y € Y™, and so, by the

m=0 yeyn
S P{B.} (54)
M-—1
<> > P{B(m,y)} (55)
m=0yeyn
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-1

< Z exp{—e"“+ne+ 1} (56)
m=0 yeynr
ZenR-|y|n-eXp{—e"€+’l’L€+1}, (57)
which still decays double—exponentially fast. Thus,
1
P {_ﬁ log P.(Cp) < Eo}
1 Mot
P LY Y Wi
m=0 m/#m yeyn
. exp{flg(Pwm/y)} Z e—n~E0 (58)
exp{ng(Pe,.y)} + Zm(y)
] M-1
=P{CaE€BL 2D D> Y Wlylzn)
m=0 m’/#m yeYym
. eXp{Ang(PfEm/y)} > e—n~E0
exp{ng(Pe,.y)} + Zm(y)
] M=1
+P<C, EBE,M Z Z Z W(y|wm)
m=0 m/#m yeyn
. eXp{Ang(PfEm/y)} Z —n-FEy (59)
exp{ng(Pe,.y)} + Zm(y)

M—-1
<P cneBg,%Z YD Wiylaw)

m=0 m’'#myeyn"
X min ¢ 1, ~ eXp{ng(Pwm,y)} =
exp{ng(Px,,y)} +exp{na(R — €, Py)}
> e "o} 1 P{C, € B} (60)

1 M-—1
~p cneB;,MZ S Wylam)

m=0 m/#m yeyn

X exp {—n . [max{g(pwmy), a(R — ¢, Py)}

_ g(Pmm,y)]+} > e*"'Eo} L P{C, € B} (61)

M1
1 5
C, € B, i E g exp{—nl'(Pz, 2, ,,R—€)}

=P
m=0 m/#m
> =P} (62)
| M1 X
L —nF(Pmmmm,,R—e) —n-E
<P M;ge : >e B G (63)

where in (60), the inner terms in the first expression of (59)
were upper—bounded according to (52) as well as the trivial
upper bound of one, and the indicators of the second summand
were trivially upper—bounded by one. In (61), we used the
SME (7). In (62), the inner—most sum over y € )" was
evaluated using the method of types, with the functional
I'(Qxx’, R) defined in (14) (see [12, Sec. 5] for more details),
and the fact that P{B.} is double—exponentially small was
used. One of the difficulties in the statistical analysis of
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N(Qx x-) (37) is that it is the sum of dependent® (though pair-
wise independent) binary random variables. This is different
from the more commonly encountered type class enumerators
(see, e.g., [16], [17], [18]), which are sums of independent
binary random variables. Hence, existing results concerning
the LD for type class enumerators of independent variables
are not applicable, and thus, more refined tools from LD
theory are required, like those of [19], that will allow us to
handle dependency between terms’. In spite of the statistical
dependencies, it turns out, that the LD behavior of N(Qx x/)
and the ordinary type class enumerators are the same. This
can be seen in the following theorem, which is proved in
Appendix B.
Theorem 3: For any s € R,

P{N(Qxx) > "} = ¢ PR, (64)
where,
E(R,Q,s) =
(b B

Then, we rewrite (63) in terms of the enumerators
N(Qxx) and get

1
P{—ElogPe(Cn) < EO}

<PS Y

Qxx€2(Qx)

N(Qxx/)exp{—n -T(Qxx,R—¢€)}
> 6n~(R7E0)} (66)
N(Qxx/)exp{—n -T(Qxx,R—¢€)}

> en~<Ron>}

= IP’{ max
Qxx€2(Qx)

(67)

—P U

N(Qxxr)exp{—n -T(Qxx,R—¢€)}

Qxx€2(Qx)
2 en~(R—E0)} (68)
= Y P{N(Qxx)exp{-n-T'(Qxx,R—¢)}
Qxx€2(Qx)
> 6n~(R7E0)} (69)
= max P{N /
Oxn g F W (@xx)
>exp{n- (Y(R—¢ Ey,Qxx)+¢€)}}, (70)

where the steps to (67) and (70) are due to the SME of (7).
Define the set S (R, Ey) = {Qxx' : [2R— IQ(X;X’)]Jr >
U(R—¢€,Ep,Qxx')+e}. Thanks to Theorem 3, the last

SThis dependence can be demonstrated by the following extreme example.
Let Qx be uniform over X and let Q x x/ (z, z') = 1/|X| whenever x = z’
and Qx x/(x,x’) = 0 otherwise. Then, without any prior knowledge, for
every m' # m, P{Xp, = X} = P{(Xm, Xm) €T Qxx)} =
exp{—nlg(X;X’)}, where Io(X; X’) = log|X|. Now, conditioned on
Xo = X7 and X1 = Xo, it holds that X = X with probability 1.

7 Also refer to [20, Sec. IV-C], where bounds from [19] were used to handle
weak dependencies in joint types.
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expression decays exponentially with rate E2°(R, Fy, €), which
is given by

E*(R, Eg,€)
B min { [o(X;X') —2R], Qxx € Se(R, Ep)
Qxx/€2(Qx) Qxx' ¢ Se(R, Eo)
(71)
= min [Io(X;X") — 2R]+ (72)

Qxx€QQx)NS(R,Eo)

with the convention that the minimum over an empty set is
defined as infinity. Due to the arbitrariness of € > 0, it follows
that

P {_% log P.(Cp) < EO} <exp{-n-E'(R, Eo)}, (73)

which proves the upper bound of Theorem 1.

B. A Lower Bound on the Probability of the Lower Tail
For a given m, m' # m, and y € V", define

L (y) = > exp{ng(Pe,y)}. (74)
me{0,1,....M—1}\{m,m’}
Let o0 > 0 and define the set
Bn(av m7 ml? y)
= {0+ Zuw () = expln- (BR.B) + o))}, (5)

and its complement @n(a, m,m’,y),
defined as in (22). Let

M-—1 .
= U U U Bn(gvmvmlvy)a

m=0 m’'#m ye)yn"

where ((R,Qy) is

(76)

and
Gu(0) = B;,(0).
Let € > 0 be arbitrary and define
]\(QXXMR;E)
= min {D(Qyx[W|Qx) + Io(X;Y]X)
Qy\xx/

+ max{g(Qxv), B(R,Qy) + ¢} — g(Qxv)l+}-
We get the following

P{—lloga(cm < Eo}
n

M—1

PG Y Y Y Wl

m=0 m'#myeyn"

(77)

(78)

eng(ﬁm 'y)

y i >e B (79)
"9 (P, y) + eng(PEm’y) + Zmme (y)
M-1
LYy W
m=0 m/#m yeym
eng(ﬁ)mm/y)

X - - >e"'E0} (80)
(y)

en9(Payy) 4 "9 Fm,u) Znme (Y

>P<LC, Egn

6643

M—1

7 XY Wl

m=0 m'#myeyn"

>PLC, e Gnle

ng(f)m ,y)

X > —-n E()
e"g(ﬁwmy) + e"g( mm’y) + e”'[ﬁ(Rva)JFE] N
(81)
M-—1

7 XY Wk

m=0 m'#myeyn"
x ¢ max{g(Po,y) BR Py +eb=g(Pa, )+ > e—n~Eo}

=P<LC, egn

(82)
]P’{ € Gnle
1 M-
i Z Z —1-A(Papa,, o) > g=n-Eo .
Z N(QXX’) : e_n']\(Qxqu,e) > on(R—Eo)
Qxx€2(Qx)
(84)

where (79) follows from the definitions of the probability of
error and Z,,,(y) in (11) and (74), respectively. In (80),
we lower—bounded by intersecting with the event C,, € Gy, (e).
In (81), the definition of the set Gn() in (77) was used,
in (82), the exponential equivalence "B /(e"4 +enB 4-enC) =
exp{—n - [max{A, C'} — B]+}, in (83), the method of types
and the definition of A(Qxx,R,€) in (78), and in (84),
the definition of the type class enumerators N (Qx x-) in (37).

Next, we simplify the expression of A(QXX/, R, ¢€). First,
note that for any Q xvy with marginals Q) x and Qy

PR Qr) =, max | 9@Qsy)+[R- Io(X:;Y))+}
(85)
= {merzngﬁzcax}g(@ky) (86)
> g(Qxy). (87)
Then,
AQxx/, R, €)
= QH‘lin /{D(QY|XHW|QX) + Io(X'; Y[X)

+ max{g(Qxy), B(R, Qy) + ¢} — g(Qxrv)|+} (88)
= QIJ‘ILILI{D(QWXHW@X) +1o(X" Y]X)

+[B(R, Qy) + € —g(Qxy)l+} (89)
= Qﬁ‘lin AD@Qyx[W]Qx) + Io(X"; Y]X)

+B(R,Qy) — 9(Q@xy) + €} (90)
=A(@Qxx/,R) +¢, 1)

where (89) is due to S(R,Qy) > g(Qxy), (90) is because
B(R,Qy) > g(Qxy), and (91) follows the definition in (23).
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Let us now define

g0: Cn:

>

Qxx€2(Qx)
cexp{—n- (MQxx, R) + )} = e (FF0 L (92)

such that, continuing from (84):

1
P {_ﬁ log P.(Cy) < Eo}

N(Qxx)

>P {Gn(e) N Qo} (93)
M—-1 .
= ]P ﬂ m m g’ﬂ(eamam,vy) gO : ]P{go} (94)
m=0 m/#m yeyn
M—-1
=|1-Pc U U U Butemm’,y)|do
m=0 m/#m yecy"
P{Go} (95)
M—1
> ZZZP{ emmy‘go}
m=0 m'#m yeym
P{Go} (96)

:]p{go}—Mi:l Z Z P{B’n(e,m,m’,y)ﬂgo}.

m=0 m/#m yeyn
o7

Assessing P{Gy} in (97): Now,
P{Go}

=P N(QXX’) . e*n'(A(Qxx/:R)JFE)

>

Qxx€2(Qx)
2 eTL'(R—Eo) } (98)

= Z N(QXX/) > en'(A(Qxxl,R)JerEoJre)}

Qxx€2(Qx)
99)

]P {N(QXX/) 2 en'(E(R7E07Qxxl)+e)} ’
(100)

where (99) and (100) follow by the SME and are similar
to the steps between (66)—(70). Define the set S.(R, Fy) =
{Qxx/ 2R —Io(X; X)], > E(R,Eo,Qxx/) + €}
Thanks to Theorem 3, the last expression decays exponentially
with rate E’(R, Ey, €), which is given by

E’ (R, Ey,¢€)

= max
Qxx€2(Qx)

QXX’ c Sé(R, Eo)
Qxx ¢ S{(R, E)
(101)
(102)

= min

{ [Lo(X;X') —2R],
QXX’EQ(QX)

= min o

Qx x€2(Qx)NS.(R,Ep)
and thus

(X;X') —2R],

P{Go} = exp{—n- E'(R, Ey,€)}. (103)
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Upper-bounding P{Bn(e, m,m’,y) N Go} in (97): Define
the type class enumerator
M—1

2 X
Then, we have the followmg

P{B,, (e, i, 7, y) N Go}

y(Qxy) =

rmy ET(QXY)} (104)

ng(lsxﬁly) > e"'(ﬂ(Rvpy)'i‘E)’

me{0.1,.. M L)\ {rin,rin}
M-—1
Z e—n (A(mex ,,R)+e) > o (R—Ey) (105)
m=0 m’#m
ng(fjxﬁ,,y) > en~(ﬂ(R7ﬁy)+e),
,1, - M
M—-1
Z e—n (A(mex o R)Fe) > (R—Ey) (106)
m=0 m’#m
=P Ny (Qxy)em9d(@xy) > en(B(R, Py)te)
Qxy
Z N QXX’ —n-(A(Qx x/,R)+e) > en'(R*Eo) (107)
QXX’
QXY) >e (6(1’%7159)*9(62)()/)Jre)}7
{ (QXX/) >e -(E(R,EO;QXX/)+6)} (108)
QXX’
B Z Z { QXY > en'(ﬂ(Rvpy)_g(QXY)-Q—e)l,
Qxy Qxx/

N(Qxx/)F > eﬂ'(E(REo,Qxx')JrE)'k} (109)

= max max P {Ny(QXY)l > e”'(ﬁ(Rsz)—_q(Qxy)+e)~l7

XY Qxx’
N(@xx)t > e EREQextakl  (110)
< max max P {Ny (Q@xy)' - N(Qxx/)"
Q xXx/
> e (B(R.Py)—9(Qxv)+e)l en'(E(R7E07Qxx’)+E)'k’} (111)
< max max P {Ny(QXY)l N(Qxx/)"
XY Qxx’
> e (R-To(XY)]4+e) 1 | n-(E(R,Eo,Qxx/)+¢)h } (112)
< max max [ (QXY)l ) (QXX’)k]
Qxy Orrnr e (R=Ig(XiV)[ el . on(E(R,Bo,Qxx/)+e)
(113)

where k and [ are arbitrary positive integers, and where (108)
follows from the definition of Z(R, Ep, Qxx/) in (25).
Step (111) is due to the fact that P{X > a,Y > b} < P
{X -Y > a- b}, under the assumption that a,b are pos-
itive. In (112), we use the definition of S(R,Qy) in (22),
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which implies that 3(R,Qy) > g(Qxv) + [R — Io(X:Y)]
and (113) follows from Markov’s inequality. After optimizing
over | and k,

P{B,(e,m,m’,y) N < max max inf inf
{Bn y) NG} < Qxy Qxx lENkEN

E [Ny(Qxy)" - N(Qxx)"]
en'([R*IQ(X?Y)]JrJFe)'l . e”'(E(R7E07Qxx’)+€)'k ’

(114)

For S > 0, a joint distribution Q¢v, and an integer j € N,
define the following quantity

F(S7 QUV7j)
| exp{nj (S —Io(U;V))} Io(U;V)< S
| exp{n(S—Ig(U;V)} Io(U;V)>S
We use the following proposition, which is proved in
Appendix G.
Proposition 4: Let N(Qx x) and Ny (Qxy) be as in (37)
and (104), respectively. Then, for any k,[ € N,
E [Ny (Qxv)'N(Qxx1)"]
< F(R,Qxv,1) - F(2R, Qxx, k).

Next, substituting the result of Proposition 4 back into (114)
provides

P{Bn(ea m, m/v y) N gO}
0 (LRI (X;Y )]+ —[Ig(X;Y)~ Rl3)

(115)

(116)

: e
< inf
= Oy len exp{n- ([R—Io(X;Y)]+ +¢) -1}

- e (b [2R—Iq(X;X "))+ —[Iq(X;X')—2R]+)

X max in )
Qxx' keN exp{n - (E(R, Fo,Qxx’') +¢€) -k}

As for the left-hand term in (117), we have that

(117)

n (U [R—I(X;Y)]4+—[Io(X;Y)—R]+)

1 e
- =1 inf
n P Qi exp{n (R —To(X: V)l +6) 1)

1
=——1 inf —n - (I~(X:Y) — I
n OggljflnelNeXp{ n- ([Io(X;Y) — R]4 +le)}

(118)

= min sup ([[o(X;Y) — R]+ + le) (119)
@xv IeN

= 00. (120)

For the right-hand term in (117), we get the following

1 | " en (b [2R—Iq(X;X )]y —[Io(X;X")—2R] )
— — 10g max 11
n ngx’ keN exp{n - (E(R, Eo,Qxx') +€) -k}

= min sup(k - (E(R, Eo, Qxx') + €
Qxx’ keN

2R ~ I(X: X))4) + [Io(X: X') — 2R],) (121)

= min In(X; X" - 2R
{ Qxx/ €Q(Qx): ol ) ke
[2R—Iq(X:X")]4 >E(R.Eo.Qx x/)+e
(122)
= EJ(R, Eo,€). (123)

Thus,

P{B,(c,m,m',y) N Go} < e " -exp{—n - E"(R, Ey,¢)}.
(124)
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Final Steps: Finally, we continue from (97) and use the
results of (103) and (124) to provide

1
P {_ﬁ log P.(Cp) < Eo}

. M—1 A
SP{Go} - Y 3 S B{Bulem ' y)nGo)

m=0 m/#m yeyn
(125)

> exp{—n - EP(R, Ey, )}

M—1
- Z Z Z e " . exp{—n- E}(R, Fo,€)} (126)
m=0 m/#m yeYym
= (1—e™ Y| e ™) -exp{—n - E'(R, Eo,€)}
(127)

=exp{—n- E'(R, Ep,€)}. (128)

Due to the arbitrariness of ¢ > 0, it follows that
1 .
P {—— log P.(Cy) < E} S exp{—n- BX(R, Ey)}, (129)
n

which proves the lower bound of Theorem 1.

VI. PROOF OF THE UPPER BOUND OF
THEOREM 2

Let Zym (y), Bn(0), and G, (c) be defined as in (74), (76),
and (77), respectively. One of the main ingredients in the
proof of the upper bound on the probability of the lower
tail in Section V-A is the fact that Z,,(y) is lower—bounded
by exp{na(R, Py)} with a probability that approaches one
double—exponentially fast. In order to prove an upper bound
on the probability of the upper tail, we start by showing
that exp{n3(R, P,)} serves as an upper bound on Z,,,.+ (y),
simultaneously for every m € {0,1,...,M — 1}, m’ €
{0,1,...,M — 1} \ {m}, and y € Y™, with probability
that tends to one double—exponentially fast. More specifically,
we have the following result, which is proved in Appendix H.

Proposition 5: For every o > 0,

P{Bn(a)} %exp{—e""}. (130)

We start with
1
P{——loga(cn) > Eo}
n
=P {Cn € én(a), —% log P.(Cy) > EO}
—HP’{Cn € B,(0), —% log P.(C,) > EO} (131)
<P, €G.(0)~ 208 () > o}

+]P’{Cn € B’n(a)}. (132)
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As for the first term,

P {Cn € Gn(0),

=P{C, € gn(a),

eng(ﬁ)mm/y)
X < efn'EO

en9(P) 4 "9 Po) 4 7,0 (y)

<P<C, Egn

ZZZ

m=0 m/#m yeyn"

eng(ﬁ)mm/y)
X < ko

eng(ﬁmmy) +eng(15mm/y) _|_en~[[3(R,f3y)+a] -

(y|@m)

(134)

Z2PLC,€Gn(o

Z >, D Wiylwn)

m=0 m/#m yeyn»
o o max(o(Payiy) BRLy)Fo}—0(Pe oy o efn-Eo}

(135)
2p {cn € Gn(0),
M—1
M Z S e A Pene, ) < cmeBo b (136)
m=0 m/#m
=P {Cn € gn(U)a
Z N(QXX’) : e_n'A(QXX“R?") < e (R=Eo) (137)
2(Qx)
=P Z N(Qxx/) . e~ AQxxs R.0) < e (B=Fo)
Q(Qx)

(138)

where (133) follows from the definitions of the probability of
error and Z,,, (y) in (11) and (74), respectively. In (134),
the definition of the set gn(a) in (77) was used, in (135),
the exponential equivalence e"B/(e"4 + "B 4 enC) =
exp{—n - [max{A,C} — B]y}, in (136), the method of
types and the definition of /N\(QXXI,R o) in (78), in (137),
the definition of the type class enumerators N (Q x x+) in (37),
and in (138), the event C,, € én(a) was taken out.
Next,

P {Cn € @n(a), —% log P.(Cp,) > EO}

> N@xxi)-e

Q(Qx)

—n-A(Qxx/ R,0) < e (R—Eo)

<P
(139)

= IP’{ max N(QXX,) .e—"'f\(QxquJ) < en~(R—EO)}
Q(Qx) -

(140)
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:]pﬂ

Q(Qx)

N(Qxx) < e A@Qxxs ,R,a>+R—Eo>}

(141)

where (140) is due to the SME.

If FEy is relatively small, then for every Qxx/ €
Q(Qx), either In(X;X’) > 2R or 2R — Ip(X;X’) <
AQxx',R,0) + R — Ey, and we have an intersection of
polynomially many events whose probabilities all tend to one.
Hence, for every o > 0, we assume that FEj is sufficiently
large, so there must exist at least one Qxx/ € Q(Qx) for
which Io(X;X’) < 2R and A(Qxx/,R,0) + R — Ey <
2R —I(X; X'), such that (141) decays double exponentially
fast, according to Lemma 2 in Appendix B. We define the set

V(R, By, 0) 2 {Qxx € Q(Qx) : Io(X;X') < 2R,
AMQxx, B,0) + Ig(X; X') = R < Eo}. (142)
Then,
5 1
P{Cn € Gn(o), —Elogpe(cn) > Eo}
% P ﬂ N(QXX’) < en'(]\(Qxxl,R,o’)JrR,Eo)}
Q(Qx)
(143)
<Pe () {V(@Qxx) < e @uxrRoytR=E) |
V(R,Eq,0)
(144)

Since A(Qxx/, R,0)+R—Ey < 2R—I5(X; X'), we obtain

’ ﬂ {N(QXX/) < en'(A(QXX“RrU)JerEo)}

V(R,Eo,0)
(145)
< min P {N(QXX’) < en'(A(Qxx'7R7U)+R—Eo)}
" V(R,Eo,0) o
(146)
% _ min exp{—min (e"(QR*IQ(X;X/)),e"R)} (147)
V(R,Eo,o’)
_ min eXp{ n-min{2R—1I¢ (X;X’), R}} (148)
V(R,Eo,0)
= exp {—e”'ma"ﬁ(RvEm min{zR*IQ(X?X’)’R}} ) (149)

where (147) follows from Lemma 2 in Appendix B. Let us
define

Eq(R,Ep,0) = max min{2R — Io(X; X'), R},
Qxx/€V(R,Eo,0)
(150)
such that
4 1
P {Cn € Gn(o), - log P.(C,) > EO}
%eXp{—eXp{n-El(R,EO,U)}}. (151)
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Final Steps: Finally, it follows from (151) and Proposition 5
that

1
P {_ﬁ log P.(Cp,) > Eo}

< P {Cn € gn(0)7 _% IOgR(Cn) > EO}

P {cn e Bn(a)} (152)
% exp {—e”'El(R’EO’”)} +exp{—e"?} (153)
2 exp {— exp{n - min[E, (R, Ey,0),0]}}. (154)

As a last step, we optimize over o > 0, which resulting in

a]}}. (155)

A Simplified Expression: Note that F1 (R, Ey, o) is contin-
uous and monotonically non—increasing in o, hence we can
solve for the optimal o > 0 by finding the maximal o for
which o < E;(R, Ey,0). Let us abbreviate I(X; X’) by
Ig, and then

P {—% log P.(C,,) > Eo}

o>0

% exp {— exp {n -supmin[F1 (R, Ep,0),

El (Ra E07 U)
= max min{2R — I, R} (156)
QXX’ GV(R.E(),U)
= f 2R—1g, R
{QXX/GQ(QX) Io<2R} AlLI; {mln{ Q }
4 (Bo — MQxx, Ry0) — Io + R)} (157)
= f 2R—1g, R
{QXXIEQ(Q)() Io<2R} :LI;O {mln{ @ }
pe(Bo—AMQxx,R)—o—1Ig+R)}  (158)
= ma inf {min{2R — Ig, R
{QXX'EQ(QXX) Io<2R} u>0{ { Q }
+p-(Eo— AMQxx/,R)—Ig+ R) — po}, (159)
where (157) is due to (142) and the fact that

max(qQ: ¢(@)>0} f(Q) = maxqinf,>o{f(Q) + 1 - 9(Q)}
and (158) is true thanks to (91). Now, we would like to solve
for

o< inf {min{2R — I, R}

{QXXIEQ(QX) Ig<2R} p>0
+p- (Eo — AMQxxr, R)

which is equivalent to the statement

—Ig+ R)—po}, (160)

dQxx € Q(Qx) st. Ig <2R, Vu>0:
o <min{2R — Iy, R}

+p- (BEo —AMQxx/, R) — Ig+ R) — (161)
or,

IQxx € QQx) st. Io <2R, Yu>0:
- min{2R — I, R}

AMQxx, R) —

1
o< ——
1+p

+ - (Eo — Io + R)], (162)
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or, equivalently,

o< {QXXIEQI(%XX) ro<om) u>f0 T - [min{2R — I, R}
pe (Bo — AMQxx/, R) — Ig + R)]. (163)
For simplicity, let us denote
A =min{2R — Ig, R}, (164)
B=E;—AQxx,R)—Iop+R, (165)
such that
o< in {A+MB} (166)
(@xxre@n) lo<2myuzo | 1+ 4
min{4, B} (167)

B {QXXIEQ(QX)' Io<2R}

—max{

mMaxX{Qx €2(Qx): Ig<2R, B>0} mln{A B}

MaX(Qyx €9(Qx): Igq<2R, B<0} min{4, B}
(168)
_ max{ Max(q, v €Q(Qx): lo<2R, B0} Min{A, B}
MAX{Qx x1€Q(Qx): Ig<2R, B<0}
(169)
= max min{ A, B} (170)
{Qxx€Q(Qx): Ig<2R, B>0}
= max min{2R — I,
Qxx€V(R,Ep)
Eo—A(QXX/,R)—IQ+R,R} 171)
= E}'(R, Eo), (172)

where (169) and (170) are due to the fact that A > 0,
while (171) and (172) follow from the definitions in (42)
and (44), respectively. Thus,

{——10gP >EQ}

<exp{—exp {n sup min[E; (R, Ey, 0),

]}} (173)

>0

=expq —expin- sup o (174)
0<o<E™(R,Eo)

— exp e E“b<R’E0> (175)

and the proof of the upper bound of Theorem 2 is complete.

VII. PROOF OF THE LOWER BOUND OF THEOREM 2
Let the sets B.(m, y) and B, be as defined in (52) and (54),
respectively. Also define G.(m,y) = B(m,y) and G, = B:.
Let Ep > 0 be given. Then,

1
P —ElogPe(Cn)on
{ i }
LSS S Wi

m=0 m/#m ye)yn
< e’n~E0}
(y)

exp{ng(Pr,,y)}
LYY Y W

exp{ng( acmy)} +Zm
m=0 m/;ém yeyn

exp{ng(Pe,,y)}
exp{ng(Pa,y)} + Zin(y)

(176)

<e B0 ¢, ege} 177)
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M-1
o 1 »
> P M E Z exp{—nF(Pg;ma;m/ ) R— 6)}

m=0 m'#m

< e—n~E0, Cn € ge} )

(178)

where (176) follows from the definitions of the probability of
error and Z,,,(y) in (11) and (51), respectively. Step (178)
follows from the same considerations as in eqs. (59)—(62).
Now, define the event

£ =
1 M—1
M Z Z eXp{_nF(Pac,,,me, y,R—e)} < e~ Eo :

m=0 m’#m

(179)
such that, continuing from (178),
P{C, € &, Cn € G}
M—1
=P () () Glm.w)|éo p - P{Eo} (180)
m=0 ye)yn"
M—1
=(1-P U U B(m,y)|& ¢ | -P{E&} (181)
m=0 yeYym
M-—1
> (1= > P{B(m,y)&} | -P{&}  (182)
m=0 yeym
M-—1
=P{&}— > > P{B(m,y)n&}. (183)
m=0 yeym

Lower-bounding P{&} in (183): First of all, note that
P{&}

M—-1
— 1 —YLF([DEWL;E ’ ,R—¢) —n-E
=P+ o> e <e ™Eo L (184)

m=0 m/#m

P Z N(QXX/)ean(QXX/,Rfe) S en~(R7E0)

Q(Qx)
(185)
2 P{ max N(QXX,)e—nF(QXX,R_E) - e"'(R—Eo)}
Q(Qx) <
(186)
= m {N(QXX') S en'(F(QXX/’R_E)J"R—Eo)} 5
Q(Qx)
(187)

where in (185), the definition of N(Qxx) in (37) was used,
and (186) is due to the SME in (7).

Now, if there exists at least one Qxx: € Q(Qx) for
which Io(X;X’) < 2R and 2R — Io(X; X') > T'(Qxx-,
R — €) + R — Ej, then this Qxx- alone is responsible for
a double exponential decay of the probability of the event
{N(Qxx:) < em(N(@xx/B=)+R=FEo)1 (thanks to Lemma 2
in Appendix B), such that the probability in (187), which
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is of the intersection over all Qxx/ € Q(Qx), decays
double exponentially fast. On the other hand, if for every
Qxx: € Q(Qx), either Io(X;X') > 2R or
2R — IQ(X;X/) < P(QXX/,R - 6) + R — Ey,
then we have an intersection of polynomially many
events whose probabilities all tend to one. Thus, this
probability is exponentially equal to one if and only
if for every Qxx» € Q(Qx), either Io(X;X’) > 2R or
2R—Io(X; X') <T(Qxx’, R—e€)+ R— Ey, or equivalently,

2R < min
Qxx€Q(Qx

+ [F(QXX/,R— 6) +R— EO]+}.

){IQ(XéX/)
(188)

Let us now find what is the maximum value of Fq for which
this inequality holds true. The condition is equivalent to

min max {Io(X; X'
QXX/EQ(QX)OS(Lﬁl{ Q( )

+a(T(Qxx, R—¢)+ R~ Eg)} > 2R, (189)

or

VQxx € Q(Qx) Ja € [0,1] :
Io(X; X') +a(T(Qxx,R—¢)+ R—Ey) > 2R, (190)

or
VQxx € Q(Qx) Ja €[0,1]:
I'Qxx,R—e€)+R+ % (Io(X; X') —2R) > Ey, (191)
or, equivalently,
Ey

< min  max {T(Qxx,R—e)+R
Qxx€9(Qx) 0<a<l

1
+ = (Ip(X; X) - 23)} (192)
= min MQxx,R—€)+R
Qxx€2(Qx)
Io(X;X')—2R 2R > Io(X; X)
N { 50 ok < Ip(x;x) | 19
= min {T(Qxx,R—¢)+1o(X;X') — R}

{Qxx/ €9(Qx):
Io(X;X)<2R

(194)

< E(R). (195)

Thus, we assume that £y > FE,.(R), which ensures that
there exists at least one Qxx/ € Q(Qx) for which
Io(X;X') < 2R and T'(Qxx,R —¢) + R — Ey <
2R — Io(X;X’), such that the probability in (187) decays
double exponentially fast. Define

A1 ={Qxx € Q(Qx) : Io(X;X') > 2R}

A = {Qxx € QQx) : Io(X;X') < 2R,
F(Q@xx R—¢)+Io(X;X') — R < Eo+¢} (197)

A ={Qxx € Q(Qx) : Io(X;X') <2R,
M(Qxx,R—¢€) +1(X;X')— R> Eg+¢}. (198)

(196)
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Defining the events

Fo=

A

Qxx' EALUA,

{N(QXX/) 0};

and,

F@xx:) = {N(QXX,) < en'(l“(Qxx/7R—e)+R—EU)}7
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In order to upper—bound the probabilities in the summation

(199) in (212), we define the following truncated enumerators

T{(xm,®m) € T(Qxx")},
=2 m/e{2,3, . M—1}\{m}

(200)
213
then considering the probability in (187), we have that 1)
and the event
P N F@xx)
Qxxr€Q(Qx) A= () {¥@xx)=0}. (214)
Qxx/EA2
=P N F(Qxx1) (201)
Qxx'€EAIUAUAS Then,
>P N Fl@xx), N {N(@xx') =0} P{(Xo0,X1) € T(Qxx), Fo}
Qxxr€4s Qxxr €A =P{(X0,X1) € T(Qxx),
(202)
N {N@xx) =0} (215)
=PJ () F@xx)|Fop P{Fo} (203) Qxexr €AUAs
QXX/ €A3 M—1
=P (X0, X1) € T(RQxx"), N N
=[1-P U Z@xx)|Fop | -P{F} (204 O s EALUAy M=0
QXX/EA:;
ﬂ (Xm;Xm’) ¢T(QXX’)
> (1= > P{F@xx)|F} | P{F}. (205) m/€{0,1,..., M—1}\{m} { }
@xxr€As (216)
Next, it follows from Markov’s inequality that Mot
P {N(QXX/) > " (T(Qxx/,R=€)+R—Fo) ]-'0} (206) <P (X0, X1) €T(Qxx), ) N
3 m=2
E[N(Qxx")|Fo @0 O xxr €AIUA,
- en'(F(QXX’vaé)‘FR*EO) {(X X ) ¢ T(Q )}
_ ms m’ XX’
E {Zﬁ)f:ol m’;émI{(Xm’ Xml) € T(QXX/)}‘]:O} m’€{2,3,....M—1}\{m}
= e”'(F(QXX’7R_€)+R_EO) (217)
208
o CO® P (X0, X1) € T(Qxx)}
o Zm:O m,’;ém,P{(vaxm/) € T(QXX’)LT'.O} M1
= e"'(F(QXX’vR_€)+R_E0) % P ﬂ m
(209) Qx 1 EAUA, M=2
en2h . p {(XO, Xl) S T(QXX’)l}—O}
< = T . (210) .
en T(Qxxr, R—e)+ o) {(Xm;Xm,’) ¢ T(QXX’)}
We continue from (205) and get that m/€42,3,. M—1}\{m}
(218)
P ﬂ F(Qxxr) =P{(Xo0,X1) € T(Qxx)}
Qxx€2(Qx)
N enQR']P{(Xo,Xl) ET(QXX/)|.7:0} P ﬂ {N(QXX'):O} (219)
- 0 <A e”'(F(QXX/vR_€)+R_E0) QXX’ €ALUA,
R <P{(Xo,X1)ET ,
pimy iy SPIX0 X1 €T@Qxx))
=P{Fo} . P N {N(QXX,) — 0} (220)
e P{(Xo,X1) € T(Qxx'), Fo} OrvreA
o Z en(D(Qx x/,R—e)+R—Eo) - (212) o2
Qxx/EAs =P{(X0, X1) € T(Qxx)} - P{F1}. (221)
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Substituting it back into (212), now yields

P m F(Qxx)
Qxx€2(Qx)
>P{Fo}
n2R | ,
- Z e P{(Xo,X1) € T(Qxx),Fo} (222)
e”'(F(QXX’vR*E)JerEO)
Qxx'EAs
> P{Fo}
B enQR.]P{(Xo,X1)ET(QXX/)}.]P{}'I}
en(T(Qx x7,R—e)+R—Eo)
Qxx'EAs
(223)
=P{%o}
enQR i P{(X07 Xl) S T(QXX/)}
_P{fl} . Z en'(F(QXX’vR_E)+R—EU) .
Qx x'EAs
(224)

Generally, it follows that P{Fy} < P{F}. First, we
lower—-bound P {F(}. The following proposition is proved in
Appendix I:

Proposition 6: If Ey < E,(R), then

max {2R — Io(X; X)}}}

P{F > exXpq —expqn
{ 0} - P { P { xx/ €Az
(225)
In addition, we can easily prove that under the condition
of Ey < E.(R), P{F,} can be upper-bounded by the same
expression that lower—bounds P {Fy}. We have that

P{F}
—-P ﬂ N(Qxx:) = O} (226)
Qxx/ €A

e . PIN N =0 227
< g, P{¥@xx) =) o
2 . o n(2R—Iq(X;X")) _nR
< QXI)I(I/H»El.AQ exp { min (e ,e ) } (228)
_ . _ n(2R—Ig(X;X")) 229

QXI)I(I/HEI.Az exp{ ‘ } ( )
B -

XX/EAZ
(230)

where (228) is due to Lemma 2 in Appendix B and (229)
follows from the fact that Ey < E,(R) is equivalent to
ming ., e, Io(X; X’) > R (Appendix I). Hence,

P{Fo}

=P {F1}

= exp {—eXp {n

xx/EA2

max {2R — Io(X; X)}}}
(231)
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Using the definition of the set A3 provides

P{&}
=P N FQxx) (232)
Qxx€2(Qx)
> P{Fo}
e P{(Xo,X1) € T(Qxx')}
—P{A} Z en-(T(Qx x/,R—¢)+ R—En)
QXX’E-A3
(233)
o e (2R—Iq(X;X"))
=1 Z on-(D(Qxx/, R—e)+ R—Eq)
Qxx/E€A3
exp{—exp{n max {2R — Io(X; X)}}} (234)
XX’E 2
= (1 - e_”e)
-eXp{—exp {n max {2R — Io(X; X)}}} (235)
xx/E€EA2
3exp{—exp{n max {2R — Io(X; X)}}}
xx/ €Az

(236)
Upper-bounding P {B.(m,y) N E} in (183): Recall that
’ y m 80}

P{B.(m.
{ ng(ﬁ’xﬁly) < en~a(R76,Tz’y)’
M—

me{o,l,....M 11\ {m}

(237)

Z Z _"F(Px—mxml 7R_E) < en'(RfEO)

m=0 m'#m

In order to upper—bound this probability, we do the follow-
ing. In the first event, instead of summing over {0,1,...,
M — 1} \ {m}, we sum over {|M/2],|M/2] +1,...,M —
1} \ {7}, and in the second event, instead of summing over

{(m,m") : m,m' € {0,1,...,.M — 1}, m # m'}, we sum
over N2 = {(m,m/) : m,m' € {0,1,...,|M/2] — 1},
m # m'}, hence, the two events become independent:
P{B.(m,y)NE}
<P Z eng(ﬁxmy) < en.a(R—e,ﬁy)
me{[M/2],...M—1}\{m}
x P > o0 (Px,x, , R=€) < jn:(R—F)
(m,m’)EN?2

(238)

As for the first factor in (238), note that its sum has exponen-
tially many terms as Z,,,(y), and hence is also upper—bounded
as in (53). The second factor in (238) can be upper—-bounded
using similar analysis as in the proof in Section VI, which
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results an upper bound similar to (230). Thus,

P {Be(ma y) N 80}
< exp{—e"“+ne+1}

o { oo mas o0 tqcrxn .

xx’ €Az
(239)
Final Steps: Finally, we continue from (183) and use the
results of (234) and (239) to obtain
1
P{——loga(m > Eo}
n

M—1

P{&}— > > P{Bm,y)N&}

m=0 yeyn

ex —ex mn -
p{ p{ Q

M—1

- Z Z exp{—e"“+ne+ 1}

m=0 yeyn

- eX — exX mn -
p{ p{ Q

= (L= e |Y" - exp{—e" +ne+ 1})
{n o max {2R — I (X; X')}}} (242)
n

—ex

{ P xx/ €Az
[e]

= exp {— eXp{

Vo

(240)

Vo

max {2R — Io(X; X’)}}}

XX/ EA2

max {2R—IQ(X;X’)}}} (241)

xx/ cA2

- exp

max {2R — IQ(X;X’)}}} ;

Qxx/EA2
(243)

which proves the lower bound of Theorem 2.

APPENDIX A
Preliminaries

The main purpose of this appendix is to provide the
general setting and the main results that are borrowed
from [19].

Let {Uk } keic, where K is a set of multidimensional indexes,
be a family of Bernoulli random variables. Let G be a
dependency graph for {Ug}rex, i.e., a graph with vertex
set IC such that if 4 and B are two disjoint subsets of /C,
and G contains no edge between A and B, then the families
{Uk}rea and {Ug}rep are independent. Let S =, i Uk
and A = E[S]. Moreover, we write 4 ~ j if (¢,7) is an edge
in the dependency graph G. Let

© = maxE[U3], (A.1)
Q= Y E[U, (A2)
JEK,j~1
Q:rpe%_ . _E[Uj], (A3)
JEK g~

6651

and

(A4)

@:%Z S EUU;)

€K JEK,j~i

The following result will be used in the proof of Lemma 2 in
Appendix B:

Fact 1: With notations as above, [19, Th. 10] states that for
any 0 <a <1,

P{S < aA}

A2 A
< eXp{—min ((1 _a)278@+2A’(1 —a)6—Q>}.
(A.5)

The following result will be used in the proof of Lemma 6
in Appendix B:
Fact 2: With notations as above, [19, Th. 3] states that,

AZ A A
— < _ 3 - __— .
P{S =0} exp{ mm(8 'S ,2>}

Next, define ¢(z), 0 < 2 < e 1, to be the smallest root ¢
of the equation

(A.6)

t = et (A7)

It is well known that ¢(z) is well defined in [0,e ],
in particular, o(z) = 1 + z + O(x?). The following
lower bound will be useful in the proof of Proposition 6
in Appendix I.

Fact 3: With notations as above, suppose further that 2 +
® < e~ L. Then, with @ defined by (A.7), [19, Th. 9] states
that

P{S =0} > exp{—A - p(Q+ P)}. (A.8)

APPENDIX B

Proof of Theorem 3

Let us abbreviate Z(m, m’) 2 IT{(xm,zm) € T(Qxx")}
such that the enumerator N(Q xx-) can also be written by

N@Qxx)= Y.  I(mm), (B.1)
(m,m’)€[M]?
where the set [M]? is an abbreviation for the set
{(m,m"): m,m' €{0,1,...,M —1}, m # m'}.

Before proving Theorem 3, we start with the following
series of partial results, that are going to be instrumental in
proving Theorem 3.

Lemma 1: For any two pairs (i, j), (i, k) € [M]2, j # k,

E[Z(i,7)Z(i, k)] = exp{—2nlo(X;X")}. (B.2)
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Proof: Since all codewords are independent, it follows by
the method of types that

B[Z(i, 7)Z(i, k)]
=P{(X:, X;) e T(Qxx), (X4, Xx) € T(Qxx')}

(B.3)

> P{Xi=uq}

zeT (Qx)

-P{(SC,XJ‘) S T(QXX’); (ar:,Xk) S T(QXX’)} (B4)
S P(Xs—a}-P{(@.X;) € T(Qxx)}

EET(Q)()

]P{(:B,Xk) ET(QXX/)} (B.5)
= > P{X;=a} exp{—nlo(X; X")}

zeT(Qx)

-exp{—nlo(X; X')} (B.6)
= exp{—2nlo(X; X")}, (B.7)

where (B.5) is because X ; and X, are statistically indepen-
dent. Lemma 1 is proved.

Now, we have the following Lemma, which proposes an
upper bound on the probability of the lower tail in the case of
TP type classes.

Lemma 2: Let € > 0 be given. Then, for any Q)xx such
that Io(X; X') < 2R —e¢,

P{N(Qxx) <e " -E[N(Qxx)]}
% exp {_ min (en(zR—IQ(X;X’))7 enR) } .

Proof: We use the result of Fact 1, that appears in
Appendix A. In our case, we have ¢ = e "¢ and A =
en(2R—1o(X:X") "and it only remains to assess the quantities
O and (). One can easily check that the indicator random
variables Z (i, j) and Z(k,[) are independent as long as i # k
and j # [. Thus, we define our dependency graph in a way
that each vertex (i, ) is connected to exactly e 4 "% — 2
vertices of the form (i,1), I # j or (k, j), k # . If the vertices
(¢,7) and (k,1) are connected, we denote it by (¢, j) ~ (k,1).
Using the result of Lemma 1, we get that

(B.8)

1 .
0=3 | Z > - E[Z(i,§)Z(k,1)] (B.9)
(6,5) €M (kD) E[M]Z,(k,1)~(4.5)
- %GQTLR . (eTLR + eTLR _ 2) . G—QTLIQ(X;X/) (B.lO)
and
) = max E[Z(k,1 (B.12)
(i,5)€[M]3 zz: . (k. )]
(k,l)e[M]*,(k,l)N(’L,j)
( nR +enR _ 2) . e—le(X;X/) (B13)
= (B-1e(X: X)) (B.14)
Then,
A n(2R—Iq(X;X"))
S —— (B.15)

60 en(R—Ig(X;X7)
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and,
A2 e (AR—2I (X;X"))
RO 7oA BRI (NX)) | @R Toxixy  (B16)
e(2R—Ig (X;X"))
T en(R-Ig(XXN) § 1 (B.17)
en(2R—1q(X;X7))
= I (XXE (B.18)
Hence,
P{N(Qxx) <e " -E[N(Qxx)]}
o en(2R—Io(X;X"))
< exp{ min ( TR T (X0, e"R>} (B.19)

_ exp{ mm( n(2R—Ig (X;X’ ) e

)} . (B.20)
Now, if Io(X; X’) < R, we get

P{N(Qxx) < e E[N(Qxx)]} < exp{—e"},

(B.21)
and otherwise, if R < Io(X; X') < 2R —e¢,
P{N(Qxx/) <e " -E[N(Qxx)]}
% exp {—e"(QR_IQ(X;Xl))} (B.22)
<exp{—e"}, (B.23)

which completes the proof of Lemma 2.

Before moving on to the upper tail, we need the following
lemma, proved in Appendix C.

Lemma 3: For any k € N,

E [N(Qxx)"]

<{exr>{nk<2R Io(X; X))} Ig(X;X') < 2R
exp{n (2R — Io(X; X'))} IQ(X, X')>2R -
(B.24)

Concerning the upper tail, we have the following result.
Lemma 4: Let € > 0 be given. Then, for any Q) x x+ such
that Io(X; X') < 2R,
P{N(Q@xx') = " -E[N(Qxx/)]} < e "™

Proof: For any k € N, Markov’s inequality and Lemma 3
implies that

P{N(QXX/) Z ene E[N
E[N(Qxx)"]

(B.25)

(Q@xx)]}

< R BN Q) (B.26)
exp {nk (2R — Io(X; X))}
< fnf e (ep(n @R— Io(X: X )F B2
= lirelg exp{—nke}, (B.28)
thus,
1
> sup ke = 00 (B.29)

keN

which proves Lemma 4.
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Next, we treat the TE type classes.
Lemma 5: Let € > 0 be given. Then, for any Q) x x+ such

that Io(X; X') > 2R,
]P{N(QXX/) > e"e} < e e,

Proof: For any k € N, Markov’s inequality and Lemma 3
implies that

P{N(Qxx) >e"}
of E[N(Qxx)"]

(B.30)

<i (B.31)
keEN enke

. _ X!
keN enre

= gnIfV exp{—n(Ig(X;X') — 2R + ke)}, (B.33)

€
and hence,
1
liminf ——logP{N(Qxx') > "}
n— oo n
> sup {Io(X;X') — 2R + ke} = oo, (B.34)
keN

which completes the proof of Lemma 5. Furthermore, we have
Lemma 6: For any () x x such that Io(X; X') > 2R,

P{N(Qxx) = 1} = exp{n(2R — [o(X; X'))}. (B.35)
Proof: An upper bound simply follows from Markov’s
inequality:
P{N(Qxx') > 1} <E[N(Qxx)] (B.36)
=exp{n(2R — Io(X; X'))}. (B.37)
For the lower bound, we use Fact 2 from Appendix A.
Similarly to (B.15) and (B.16), we have
A2 n(4R—2I1o(X;X"))
N 1 (B.38)
80  en(BR—2I5(X;X7))
and,
A r(R-Ig(X;X")
60 en(R—Ig(X:X")
Now, since I(X; X') > 2R,
P{N(Qxx') = 0}

<exp {— min (e”R, ek % . e"(QR_IQ(X;Xl))> } (B.40)

= exp {—% . e”(QR_IQ(X?X/))}

L neR-Io(xiX)) | % L eMUR=21(X:X") (B 49)

= "l (B.39)

(B.41)

<1-

where (B.42) is due to the fact that for t > 0, e ¢ <1 —t+
t2/2, and so,

P{N(Qxx/) =1} =1-P{N(Qxx') =0}
rexp{n(2R — Io(X; X))}

(B.43)

>

-exp{n(4R — 21 (X; X"))}
(B.44)
(B.45)

0| =N

= exp{n(2R — Io(X; X'))},

which is compatible with the above upper bound, proving
Lemma 6.
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Proof of Theorem 3: Let us abbreviate I = Ig(X;X’).
We use the results of Lemmas 2, 4, 5, and 6, and get the
following exponential rate of decay for P{N(Qxx/) > e™}:

E(R,Q,s)
Ig — 2R Ig > 2R,s<0

. 00 Ig >2R,s>0

=9 0 Iy <2R,s <2R— I, (B.46)
o0 IQ§2R75>2R—IQ
[IQ — 2R]+ Ig > 2R, s < [QR— IQ]+

) > Io >2R,s> 2R — Ig]+ (B.4T)

o [IQ — 2R]+ Ig <2R,s < [QR— IQ]+ ’
00 Io <2R,s>[2R—Ig]+

[ la-2R, RR-Igl >

B { 00 2R—-Igl+ <s '’ (B.43)

which proves Theorem 3.

APPENDIX C
Proof of Lemma 3

-/

For a set of indices J let us denote J2 = {(j,5') €
J? . j # j'}. Recall that Z(m,m') = Z{(X ., X /) €
T(QXXI)} and N(QXX’) = Z(m,m’)e[Mﬁ I( 77’71’).
We show by induction that

. enk(QR—I) I < 2R
E[N(Qxx)*] < { ooni2m) o op o (©CD

where I is a shorthand notation for I (X; X’). This clearly
holds for £ = 1 by linearity of expectation. We assume it
holds up to £ — 1 and show this for &.

Proof for k: Assume that {(m;,m})};~; are given, where
(mi,m}) € [M]? for all i € [k — 1]. Let My_; =
Uf:_f{{mi} U {m}}} be the set of indices of the k — 1
pairs of codeword indices {(m;,m})}*~!. We condition on
all these codewords, and then compute expectation w.r.t. all
other codewords. For any fixed k, the number of codewords
in the first £ — 1 indicators is negligible to the number of all
other codewords. Specifically, |Mj_1| < 2(k—1) holds. Now,

>

(mr,mp)€[M]2

- ¥

(mp,mi)€((MP\My—1)2

DD

mi €M1 m) e[M\Mj,_1

LD

(mp,m})E€(My—1)?

k—1

I(mka m;c)
I(mka m;c)
(Z(mp, my,) + Z(my, mue))

Z(my, my,). (C.2)

By (C.2), linearity of expectation, the independence of code-
words assumption, and the trivial fact that Z(my, m},) <1,

El )

I(mk, m%) {XZ}ZEMJC71
(my,m})€[M]2

é en(2R=1) | A(k — 1)en(R71) 4k — 1)2

= max{e”(QR_I), 1}.

(C.3)
(C4)
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Now,

E [N(Qxx)"]

Mk
B 2. E [[]Z0mi,m) (C.5)
{(ma,,mé?g[M]i} Li=1
1<i<k
rk—1
- X E[[]Zemm)
{(mi,m;)e[M]i,} Li=1
1<i<k—1
Y T(m,my) (C.6)

(my,m} ) €[M]3

The expectation in (C.6) is given by

Z Z(mg,my,)

(my, my )€ [M]2

*

>

(my,m})e[M]?
HXihem, 1]] €7

k—1
E H Z(mi,m?) -
i=1

k—1
=E |E | [] Z(mi,m)) - T(my, m},)
i=1

D

(my,m})E[M]?
H{Xibiem,_,]] (C8)

Z(my,my,)

k—1
i=1

(C.9)

(k-1
< max{e"*f~D 1} . E H I(mi,m;)l )
Li=1

where (C.8) is due to the fact that upon conditioning on
{X1tiemp s Hi:ll Z(m;,m}) is fixed, and (C.9) follows
from (C.4). Substituting it back into (C.6) and using the
induction assumption provides

E[N(Qxx)"]

< max{e"f=1D 11

> E

{(m@?mg)e[M]i}

k—1
HI(ml,m;)l

i=1

1<i<k—1

(C.10)

= max{e"®?f~D) 1} .E {(N(QXX/))k_l} (C.11)

. (k—1)(2R—-1I) T 2R

n(2R-1) 11 .} €" <

< max{e a]-} { e—n(I—QR) I>2R

(C.12)
enk(QRfl) I < 2R
= { o-n(I-2R) I>9R (C.13)
Thus, Lemma 3 is proved.
APPENDIX D

Proof of Proposition 1

The monotonicity is straightforward, and follows the fact
that L(R, Ep) and M(R, Ey), defined in (26) and (27),
respectively, become larger when Ey grows. In order to show
the fourth item, observe that when Ey < Eg", the set L(R, Ey)
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is empty. As for the second item, we seek a condition on Fj
such that E*(R, Ep) > 0:

min

Io(X; X') — 2R]; > 0.
QXX/eL(R,Ew[ ol ) ]+

D.1)

Explicitly,

min
{Qxx/€Q(Qx): PR—Iq(X;X")]+>T(Qxx/,R)+R—Eo}

[Io(X;X') = 2R]4 > 0, (D.2)

and by wusing the identity mingg. 40)<0y f(Q) =
ming supg>o{ f(Q) + s - g(Q)}, it can also be written
as

min sup{s- (T wR)+ R—FE
Qxx€2(Qx) 5218{ ( (QXX ) 0

—[2R — Io(X; X)) + [Io(X; X') —2R].} > 0, (D.3)

which means that for every Q x x € Q(Qx) there exists some
s > 0, such that

S - (F(QXX/,R) +R—FEy— [QR— IQ(X;X,)]+)

+[Io(X;X") = 2R]4 > 0, (D.4)
or equivalently,
Ey <T(Qxx,R)+R—[2R— Io(X; X")]+
n [IQ(X;XS’) — 2R}y D.5)
Thus,
Ey < min  sup{I'(Qxx, R) + R

Qxx'€Q(Qx) s>0

- 2R Tg(x: x4 QXD = 20 } (D.6)

T(Qxx/, R)+ R~ 2R — Io(X; X')]+

{0
o0

= m
{Q@xx€2(Qx):

= min
Qxx€2(Qx)

Ig (X; X/) <2R

IQ(X; X') > 2R (D.7)

om0 @xxn B) TR

— 2R—Io(X: X)]+} (D)

= . F /,R
{QXXIEQ(QX%%HIIQ(X;X’)SQR}{ (QXX )
+1o(X; X') — R} (D.9)

= E.(R), (D.10)

where the oo in (D.7) is because the maximizing s > 0 in (D.6)
when Io(X; X') > 2R is s* = 0. The proof of the third item
is very similar to the proof of the second item and hence
omitted.

APPENDIX E
Proof of Proposition 3
The monotonicity is immediate, since both V(R, Ey) and
U(R, Ey), defined in (42) and (43), respectively, become larger
when Ey grows. In order to show the second item, we seek a
condition on Ey such that E®(R, Fy) > 0:
{2R - Io(X;X")} > 0.

max

(E.1)
Qxxleu(RvEO)
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Explicitly,
max
{R@xx€Q(Qx): Io(X;X")<2R, T(Qxx/,R)+1o(X;X')—R<Eo}
{2R—Io(X;X")} >0, (E2)

and thanks to the fact that maxyqg. ¢)>0; f(Q) =
maxq inf,>0{f(Q) + 1 - g(Q)}, it can also be written as

max inf {2R — Io(X; X')
{Q@xx€Q(Qx): Io(X;X")<2R} p20
+p (B0 —T(Q@xx/, R) — Io(X;X') + R)} >0, (E3)
or, equivalently,
ElQXX/ (S Q(Qx) S.L. IQ(X;X/) < 2R, V/L >0:
w-Eo>Io(X;X')—2R
+u-T(Qxx,R)+1o(X;X')—R), (E4)
or,
1 X)) —
EO > min Sup {M
{Qxx€Q(Qx): 1o(X;X")<2R} >0 M
+T(Qxx, R) + Io(X; X') — R} (E.5)
= min r R
{Qxx€2Qx): IQ(X;X’)§2R}{ (Qxxr, )
+1o(X;X')— R} (E.6)
= E.(R), (E.7)

where (E.6) is because the maximizing p > 0 in (E.5) is
w* = oo, since Io(X; X’) < 2R. The proof of the third item
is very similar to the proof of the second item and hence
omitted.

APPENDIX F
Proof of Corollary 1

The probability of any codebook in the ensemble is given
asymptotically by exp{—nHg(X)e™?}, hence, in order to
assure that a code exists, we demand that

1
P {—— log P.(Cy,) > EO} > exp{—nHg(X)e"}.  (F1)
n
Now, the lower bound of Theorem 2 reads

1
P {_ﬁ log P.(Cp,) > Eo}

2 _ . 2R — Io(X; X’
exp{ e {n  mmx (2R- 106X}

(F.2)
thus (F.1) will obviously be satisfied if
max 2R —Io(X; X"} < R, F.3
Qe i ) (XX} =
or, equivalently,
min Io(X;X') > R, (F.4)

Qx x'€U(R,Ep)

which is exactly (I.19). Then, following some algebraic work,
that can be found in (I.20)-(1.30), we found that (F.4) is
equivalent to Ey < E. (R).
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APPENDIX G

Proof of Proposition 4

For a set of indices [J let us denote J2 = {(j,5') €
J%:j # j'}. Recall that Z(m,m') = Z{(Xm, Xm) €
T(QXX')} and N(QXX’) = Z(m,m’)e[]\i]f I(m, m/). Let us
abbreviate Z(m) = Z {(X,,y) € T(Qxvy)}, such that

Ny(@Qxvy)= Y I(m).

me[M]

(G.1)

Recall the definition of F'(S,Quyv,J) in (115). We show by
induction that

E [Ny(Qxy)'N(Qxx)"]
< F(R,Qxy,l)- F(2R, Qxx, k). (G.2)

Checking for k = [ = 1: Note that due to the symmetry of
the random draw over the type class:

(G.3)

E[Z(m,m")Z(m)] = E[Z(m)E[Z(m,m’) | Xm]]
! (G.4)

— E[Z(m)] - E[Z(m,m)

and similarly, E [Z(m,m')Z(m')] = E[Z(m')] - E [Z(m,m')].
Thus, for k =1 =1:

E[Ny(Qxy)N(Qxx)]

= Y > EZ(mm)I(r)]

(m,m’)e[M]2 re[M]

- 5

(G.5)

E[Z(m, m")] E [Z(r)]

(m,m")e[M]2 \re[M]\{m,m’}
+E [Z(m,m")Z(m)] + E [Z(m,m")Z(m')]) (G.6)
= Y > E[Zmm)E[Z() G.7)
(m,m’)€[M]3 re[M]
= on(2R=Io(X;X") | on(R—Ig(X;Y)) (G.8)

Induction assumption: Assume that (G.2) holds up for some
(k—1,1—1). We show by two inductive steps that this holds
for (k,l — 1) and (k — 1,1) and thus for any (k,1).

Proof for (k,l —1): Assume that {(m;,m})}/— and
{rj}é;ll are given, where (m;,m}) € [M]? for all i €

[k —1], and r; € [M] for all j € [l —1]. Let My_1,-1 =
Ufz_ll{{mi} U {mi}} U Ué_:ll{rj} be the set of indices of
the k — 1 pairs of codeword indices {(m;, m})}*=} and of
the [ — 1 codeword indices {r; é_:ll Clearly (Mpy_1,;-1] <

2k—-1)+1-1 2 Ck—1,—1 holds. Now,

>

(mw,mj,)€[M]2

Z(my,my,)

= Z Z(my,my,)
(mp,m))e([M\Mpr_1,1-1)2

+ D S (Tl my) + (mly, mi))

mEEMi_1,1-1 mj €[M\Mp_1,1-1

+ 2.

(mp,m})e(Mpr_1,1-1)2

Z(my,my,). (G.9)
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By (G.9), linearity of expectation, the independence of code-
words assumption, and the fact that Z(my,m},) < 1,

Bl >
(s mip)€[M]2

*

<enCR-IGXD) y9ey g g en(F-IeBGXD) L L

I(mk’v m;c) {XS}SEMIC71,171

(G.10)
= max{e"?H-1e(XGX) 11 (G.11)
Next,
E [Ny(Qxy) 'N@xx)*]
k -1
= > Y. E|I[Zmi,m) [[Z(r5)
m;,m})€E <, E[]W] _i:l Jj=1
{( 1<z)<k }{1{ 1
(G.12)
[k—1 -1
= > > E|IIz0nimi)-T]Z0)
i=1 =1
{rmasops gty L :
> Z(mg,my) (G.13)
(mp,m})e[M]2
The expectation in (G.13) is given by
k—1 -1
E | [T Ztmim)) - ] Z(ry) Yo Z(memp)
i=1 j=1 (my,m},)e[M]?2
k—1 -1
=E |E | [] Z(mi,m)) Z(ry)
i=1 j=1
Z I(mkam;c) {XS}SEMIC—I,[—I (G.14)

(mw,m ) €[M]2

k—1 -1
=FE HI(mi,mg) : HI r
i=1 j=1

-E Z Z(my, my,)

(mk,mj,)€[M]Z

*

{XS}SEMk—l,l—l

(G.15)
< max{e"(QR’IQ(X?X')), 1}
k—1 -1
[[ztmim)) - T] 20| . G.16)
i=1 j=1

where (G.15) is thanks to the conditioning on
{Xs}semy_1,_ .- and (G.16) is due to (G.11). Substituting it
back into (G.13) and using the induction assumption provides

E [Ny (Qxy)' "' N(Qxx')"]

< max{e"(2R~1e(X:X") 1y
k—1 -1
Z Z E HI(mi,m;)- Z(rj)
et (st Lo
(G.17)
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- maX{eH(QR—TQ(X;X/)), 1}
E [Ny(Qxv) ' N(Qxx)*"] (G.18)
< maX{en(QR—TQ(X;X/)), 1}
F(R,Qxy,l—1)-F(2R,Qxx/,k—1) (G.19)
=F(R,Qxy,l—1)-F(2R,Qxx, k), (G.20)

which completes the proof of the first inductive step. The proof
of the second inductive step follows exactly the same lines and
hence omitted. The proof of Proposition 4 is complete.

APPENDIX H
Proof of Proposition 5
By the union bound,

P{Bn(a)}zp ]61 U U Bule.m,m',y)

(H.1)
m=0 m’/#m yeym
M—1
<Z Z ZIP’{ (o, m,m’ y)}.(H.Z)
m=0 m/#m yeym
Now,
=P Z en9(Px ;. y) > v (B(R.Qy)+o) (H.3)
me{0,1,...M—1\{m,m’}
—P Z N(Qxy)eng(QXY) > ™ (B(R,Qv)+0) (H.4)
Qxvy
- Z { (Qxy) > eMPURQy)Fo— g(Qxy))} (H.5)
QXY

— Yop {N(Qxy) > en(ﬁ(R,Qv)Jrrffg(Qxy))}
{@xvy: Io(X;Y)<R}
+ > P {N(QXY) > en(ﬁ(R’QY)”*g(QXY))} ;
{Qxvy: Io(X;Y)>R}
(H.6)
where (H.3) is due to the definition of Z,,,,/(y) in (74),
in (H.4) we introduced the type class enumerator N(Qxy ),
which is the number of codewords in C,,, other than x,, and
x,,, that have a joint composition () xy together with y, and
where (H.5) is due to the SME. The first summand of (H.6)
is upper—bounded by
P{N(Qxy) > exp{n (B(R,Qy) + 0 — g(Qxv))}}
=P{N(Qxy) = exp{n (o +B(R,Qv) - 9(Qxv)
—[R=Io(X;Y)], + [R— Io(X: V)], ) }} (D)
<P{N@xy) zexp{n (o +[R-Io(X;V)], ) }}
(H.8)
—P {N(Qxy) > en(a+R—IQ(X:Y))} (H.9)
< exp {_enRD(e—n[R—(a-i-R—IQ(X;Y))] He—nIQ(X;Y))}

(H.10)
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— exp {_enRD(e—n(IQ(X;Y)—a) He—le(X;Y))} (H.11)

< exp {_enR .o~ (X;Y)=0)

efn(IQ(X;Y)fo')
= exp { —e" B IXYIH) (ng 1)} (H.13)
<exp{—e"’}. (H.14)

In (H.8), we use the definition of G(R,Qy) in (22), which
implies that B(R,Qy) > g(Qxy) + [R — Io(X;Y)],, and
for (H.9), recall that R > Io(X;Y). Step (H.10) is according
to Chernoff’s bound [16, Appendix], [12, Appendix B], (H.12)
is due to the following lower bound to the binary divergence
[22, Sec. 6.3, p. 167]

D(alb) > a (m% - 1) ,

and (H.14) is true since R > Io(X:;Y). Similarly, for
the second summand of (H.6), we have

P{N(Qxy) = exp{n (B(R,Qy) + 0 — 9(Q@xv))}}
<P{N(@Qxv)Z exp {n (0 + R Io(X;Y)],) }}

(H.15)

(H.16)
=P{N(Qxy)>e""} (H.17)
<exp {—e”RD(efn(Rf") ||67"IQ(X;Y))} (H.18)
< exp {—e"R cemR=o) (1n % - 1)}

(H.19)
=exp{—€e" - [n(Io(X;Y) - R+0)—1]} (H.20)
<exp{—e"7}, (H.21)

where (H.16) is true for the same reason as (H.8), (H.17) is
because Io(X;Y) > R, (H.18) is again due to Chernoff’s
bound, (H.19) is true thanks to (H.15), and (H.21) is due to
Io(X;Y) — R+ o > 0. Hence, we conclude that for every
o>0

P{Bn(a7 m, ml7 y)}

= P{me’(y) > eXp{n : (B(Rv QY) + U)}} (H.22)
% exp{—e"?}, (H.23)
and so, continuing from (H.2), this means that
o M-1
P {Bn(a)} < Z Z Z exp {—e"7} (H.24)
m=0 m/#m yeym
Z exp{—e"’}, (H.25)
which completes the proof of the proposition.
APPENDIX I
Proof of Proposition 6
First, note that
Fo= > N@xx)=0 (L1)
Qxx'€EAIUA,
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Let us define
NAUA)E Y N@Qxx), (12
Qxx'€EAIUA,
and the binary random variables
Z(m,m', Qxx) S T{(Xm, Xow) € T(Qxx)},  (3)

such that,

M—-1

2. 2

Qxxr€AIUA2 m=0 m'#m

N(Al U.AQ) -

I(mam,a QXX’)~

14)

In order to use Fact 3 that appears in Appendix A, let us first
define an appropriate dependency graph. One can easily check
that the indicator random variables Z(¢, j, Q) and Z(k,I, Q)
are independent as long as i # k, j # [, and Q # Q. Thus,
we define our dependency graph in a way that each vertex
(i,4,@Q) is connected to exactly e™® — 1 vertices of the form
(k,3,Q), k # i, to e — 1 vertices of the form (i,l,Q),
[ # j, and to exactly |A; U As| — 1 vertices of the form
(i,7,Q), Q # Q. Let us now examine the quantities A, €,
and &. First,

A = E[N(A; U Ay)] (L.5)

= Z E[N(Qxx)] (1.6)
Qxxr€EAIUAS

. Z e (2R—Ig(X;X")) €7
Qx x'€AIUA2

. max e (2R—Ig(X;X")) (1.8)
Qx x/€AIUA2

eXp{” 0 e, R = Iol )}} 19)

=exps{n-:
e

max {2R - IQ(X;X/)}} ,

x/ €A2

(1.10)

where the last equality follows from the definitions of .4; and
Ay and the assumption that Ay is nonempty. Regarding the
quantity £); ; o of (A.2), notice that it actually depends only
on @. Thus, for some Q € A; U Ay,

QQ KN (enR + et 2) .e—nIQ(X;X/)

+ S el L11)
QeAIUAN{Q}
= n(B—Io(X:X")) Z e~ o (X:X7) (L12)
QEAlUAZ
= en(B-1(X:X) 4 pax e Ma(X5XD) T (113)
QEAlUAZ
and hence
Q= max Qo= max e B—1g(X;:X")) 1.14)
QeEA;UAS QeA;UAS
Furthermore,
® = max eiMQ(X?X’), (I.15)
QEALUAS
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such that
Q+®= max e BTe(XX)) (1.16)
QEALUAS
= max e"(B-1e(X:X"), (L.17)
QEA>

Now, we would like to have Q + ® € [0,e!]. Specifically,
if Q+® — 0 as n — oo, then (2 + ®) = 1. In order to
have ) + ® — 0, we need that

R—1Io(X:X) <0 L18

gzne%{ Q(X; X} <0, (L.18)
or

in  Io(X;X') > R. L19

o, min, To(X:X) €.19)

Let us abbreviate Io(X;X’) by Ip. In order to find
the highest Ey for which (I.19) holds, let us derive
ming, ., e, Io(X; X') as follows:

min  Ig
QXX’ cA2

= min Io (120
{Qxx€Q(Qx): Io<2R, F(Q,Rfe)JrIQfRSEO}

= min supsup{lp +o-(Iop — 2R
QXX/EQ(QX)UZPO/J,Z%{ @ ( @ )

+p- (D@ R—e)+1Ig— R—Eo)}, (121)

where in (I.21) we used twice the fact that

mingg. 4(@)<o} f(Q) = mingsup,>o{f(Q) + o - g(Q)}.
For (I.21) to be strictly larger than R, it is equivalent to
require that for all Qx x’ € As there exist 0 > 0 and > 0
such that
IQ+U-(IQ—2R)
+u-T(@Q,R—€)+1o—R—Ey) >R, (122)

or, equivalently,

Io— R -(Ig — 2R
Eo < -9 +JH(Q )i TOQ R+ 1o - R
(1.23)
Thus,
Ey < min supsup{l'(Q,R—¢)+Ig — R
2 eniBin S {T(Q B~ ) + g
+IQ—R+U-(IQ—2R)} (1.24)
i
= min sup |'(Q,R—¢)+ Ig — R
QXX’EQ(QX)/,LZ%[ @ ) @
Ig-R
NG Ig <2R (1.25)
o0 IQ > 2R
= i sup{T(Q,R—¢) + Ig

= min
{Q@xx€Q(Qx): Iq<2R} ;>0

I _
~“ R+ QTR} (1.26)

= min I'Q,R—¢)+1Ig—R
{Qxx€Q(Qx): IQSQR}[ (Q ) @
<
+{ 0 Io <R
o0

o> R } 1.27)
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= min
{Q@xx€Q(Qx): Ig<2R, Iq<R}

{F(Qa R - 6)

+1Io— R} (1.28)

= min T ,R_ € +I _ R 1.29
{Qxx€Q(Qx): IQSR}{ (Q ) Q } ( )

= E.(R,e), (1.30)

where the oo in (1.25) is because the maximizing o > 0
in (I.24) when Ig > 2R is 0* = oo. The co in (1.27) is
due to the fact that when I > R, the maximizing u > 0
in (1.26) is u* = 0. Note that the exponent function E, (R, ¢)
converges to E, (R) when ¢ | 0. Finally, we use these results
in Fact 3 and get the desired lower bound on P{Fy}.
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