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Generalized Random Gilbert-Varshamov
Codes: Typical Error Exponent and
Concentration Properties

Lan V. Truong™, Member, IEEE, and Albert Guillén i Fabregas™, Fellow, IEEE

Abstract— We find the exact typical error exponent of con-
stant composition generalized random Gilbert-Varshamov (RGV)
codes over discrete memoryless channels with generalized like-
lihood decoding. We show that the typical error exponent of
the RGV ensemble is equal to the expurgated error expo-
nent, provided that the RGV codebook parameters are chosen
appropriately. We also prove that the random coding exponent
converges in probability to the typical error exponent, and the
corresponding non-asymptotic concentration rates are derived.
Our results show that the decay rate of the lower tail is
exponential while that of the upper tail is double exponential
above the expurgated error exponent. The explicit dependence
of the decay rates on the RGV distance functions is characterized.

Index Terms— Random coding, error exponent, typical error
exponent, gilbert-Varshamov codes, concentration properties.

I. INTRODUCTION

NTRODUCED by Shannon [1], random coding is the key

technique employed in information theory in order to show
that a code with low error probability exists without explicitly
constructing it. Codes are constructed at random, and the
average error probability over all randomly generated codes
is bounded. Then, it follows that there must exist a code
with error probability at least as low as the ensemble average
error probability over the codes. In particular, for discrete
memoryless channel (DMC), Shannon showed that there exists
a code of rate smaller than the channel capacity with vanishing
probability of error as the codeword length increases.

Since Shannon’s work, random coding has not only been
applied extensively, but has been refined in a number of
ways. For rates below capacity, Fano [2] characterized the
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exponential decay of the error probability defining the random
coding exponent (RCE) as the negative normalized logarithm
of the ensemble-average error probability. In [3], Gallager
derived the RCE in a simpler way and introduced the idea
of expurgation in order to show the existence of a code with
an improved exponent the at low rates. An upper bound to the
error exponent for the DMC, called sphere-packing bound,
was first introduced in [4] and it was shown to coincide with
the RCE for rates higher than a certain critical rate. Nakiboglu
in [5] recently derived sphere-packing bounds for some sta-
tionary memoryless channels using Augustin’s method [6].
Most proofs invoking random coding arguments, assume
that codewords are independent. Random Gilbert-Varshamov
(RGV) codes were first introduced in [7], and are a family of
random codes inspired by the basic construction attaining the
Gilbert-Varshamov bound for codes in Hamming spaces. The
code construction is based on drawing codewords recursively
from a fixed type class, in such a way that a newly generated
codeword must be at a certain minimum distance from all pre-
viously chosen codewords, according to some generic distance
function. For suitably optimized parameters, the RCE of RGV
codes with maximum-likelihood (ML) decoding is the Csiszar
and Korner’s exponent [8], which is known to be at least as
high as both the random-coding and expurgated exponents.
Most works on random coding and error exponents study
the RCE, the error exponent of the ensemble-average error
probability. In [9], Barg and Forney studied i.i.d. random
coding over the binary symmetric channel (BSC) with ML
and showed that the error exponent of most random codes is
close to the so-called typical random coding (TRC) exponent,
strictly higher than the RCE at low rates. Upper and lower
bounds on the TRC for constant-composition codes and gen-
eral DMCs were provided in [10]. For the same type of codes
and channels, Merhav [11] determined the exact TRC error
exponent for a generic stochastic decoder called generalized
likelihood decoder (GLD), of which ML is a special case.
Merhav derived the TRC exponent for spherical codes over
coloured Gaussian channels [12] and for random convolutional
code ensembles [13], and provided a dual expression of the
TRC for i.i.d. codes in [14]. Tamir et al. [15] studied the upper
and lower tails of the error exponent around the TRC exponent
for random pairwise-independent constant-composition codes
with GLD. It was shown that the tails behave in a non-
symmetric way: the lower tail decays exponentially while the
upper tail decays doubly-exponentially; the latter was first
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established for a limited range of rates in [16]. By studying
the behavior of both tails, work in [15] proves concentration
in probability. The TRC was shown to be universally achiev-
able with a likelihood mutual-information decoder in [17].
For pairwise-independent ensembles and arbitrary channels,
Cocco et al. showed in [18] that the probability that a code in
the ensemble has an exponent smaller than a lower bound on
the TRC exponent is vanishingly small. Recently, Truong et al.
showed that, for DMCs, the error exponent of a randomly gen-
erated code with pairwise-independent codewords converges in
probability to its expectation — the typical error exponent [19].
For high rates, the result is a consequence of the fact that the
RCE and the sphere-packing error exponent coincide. For low
rates, instead, the convergence is based on the fact that the
union bound accurately characterizes the probability of error.
Paper [19] also zooms into the behavior at asymptotically
low rates and shows that the error exponent converges in
distribution to Gaussian-like distributions. From this body
of works it emerges that the TRC is the fundamental error
exponent attained by specific random-coding ensembles. The
performance of poor codes has a critical role in the RCE, while
it does not count much towards the TRC.

A. Contributions

This work focusses on the RGV code ensemble and dis-
cusses concentration properties of error exponents around its
TRC. Compared with constant-composition codes, the depen-
dence among RGV codewords causes standard concentration
inequalities such as Hoeffding’s inequality not to hold. In this
work, we develop new techniques to overcome the challenges
presented by RGV codeword dependence. Our main contribu-
tions include:

o We find the exact TRC for the RGV ensemble by proving

matching upper and lower bounds on the TRC and show
that it is equal to Merhav’s expurgated exponent [20]
for suitably optimized distance function and minimum
distance. In addition, we show that for ML decoding,
the TRC of the RGV ensemble is at least as high as
the maximum of the expurgated exponent and RCE for
constant composition codes.

o We show that the random error exponent converges in
probability to the TRC.

o We characterize the convergence rates of the above con-
vergence and show that it is exponential for the lower
tail and double-exponential for the upper tail under some
technical conditions.

B. Notation

Random variables will be denoted by capital letters, and
their realizations will be denoted by the corresponding lower
case letters. Random vectors and their realizations will be
denoted, respectively, by boldfaced capital and lower case
letters. Their alphabets will be superscripted by their dimen-
sions. For a generic joint distribution Pxy = {Pxy (z,y),z €
X,y € YV}, which will often be abbreviated by P, information
measures will be denoted in the conventional manner, but with
a subscript P, that is Ip(X;Y) is the mutual information

between X and Y, and similarly for other quantities. Natural
logarithms are assumed in the derivations; examples will
employ base 2. The probability of an event £ will be denoted
by P[£], the indicator function of event £ will be denoted by
1{&}, and the expectation operator will be denoted by E[-].
The notation [¢]4 will stand for max{¢,0}.

For two positive sequences, {a,} and {b,}, the nota-
tion a, = b, will stand for exponential equality, that is
limy, o0 %log(‘g—z) = 0. Exponential inequalities a,, < b,
and a, > b, are defined as lim,_,oo %log(‘;—:) < 0 and
lim,, o0 %log(Z—:) > 0, respectively. Accordingly, the nota-
tion a,, = e " means that a, decays super-exponentialy.
For two positive sequences, {a,} and {b, }, whose elements
are both smaller than one for all large enough n, the notation
a, = b, will stand for double-exponential equality, that is

lim 110g(10gb") —0. (1)

Similarly, a,, < b, means that

1 log by,
lim sup — log < %8 ) <0, 2)
n—ooo N log a,
and a,, > b, stands for
1 log b,
lim inf — log <Og> > 0. 3)
n—oo n log a,

A sequence of random variables { A,,}22; converges to A in
probability, denoted as A,, 5 A if for all § > 0 [21, Sec. 2.2],

lim P[|A, — A| > §] = 0. )

The empirical distribution, or type, of a sequence € X",
which will be denoted by P,, is the vector of relative frequen-
cies, ]53:(33), of each symbol x € X in x. The set of all possible
empirical distributions of sequences of length n on alphabet
X is denoted by P, (X). The joint empirical distribution of a
pair of sequences, denoted by Pmy is similarly defined. The
set of all possible joint empirical distributions of sequences of
length n on alphabets X and ) is denoted by P, (X x V).
The type class of Qx, denoted by 7 (Qx), is the set of all
vectors & € X" with P, = Qx. The joint type class of
Pxvy, denoted by T (Pxy), is the set of pairs of sequences
(xz,y) € X™ x Y" with Pmy = Pxv. In addition, we also
define Q(Qx) £ {PXX’ S PH(XXX) : Px = Px/ = Qx}
Finally, [M] denotes the set {1,2,---,M}, and [M]? =
{(m,m’) € [M]? : m # m’} for any M.

C. Structure of the Paper

In Section II, we introduce error probability and error
exponents. In Section III-A, we introduce the generation
of RGV random codebook ensembles. We also mention
about properties of RGV codes and type-numerators in this
section. We derive the typical error exponent for the RGV
in Section IV. Finally, we study concentration properties of
this ensemble in Section V. Proofs of the main results can
be found in the corresponding sections while the proofs of
auxiliary results can be found in the Appendices.
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II. PRELIMINARIES

We assume that a code ¢, = {x1,%2,...,TMm} €
X" M = e is employed for transmission over a DMC
channel with channel law W(y|z) for z € X,y € .
More specifically, when the transmitter wishes to convey a
message m € {1,2,---,M}, it sends codeword x,, =
(Tm. 1y, Tm,n) € X™ over the channel. The channel pro-
duces an output vector y = (y1,¥ya2,...,Yyn) € V", according
to

W(ylzm) = [[W @ilzm.)- (5)
i=1

At the decoder side, we assume that a GLD [20] is used
to infer what the transmitted message was. The GLD [20]
extends the likelihood decoder in [22] and [23], and is a
stochastic decoder that randomly selects the message estimate
m according to the posterior probability distribution given the

channel output y as follows

exp{ng(Pe,,.y)}
M ~ )
Smer exp {n9(Pe,, y) }
where g(-), henceforth referred to as the decoding metric, is an

arbitrary continuous function of a joint distribution Pxy on
X x Y. For

g(Pxy) =Y _ > Pxy(z,y)logW(ylz), (7

reEX yey

Pr(ih = mly) = ©)

we recover the ordinary likelihood decoder [23]. For

9(Pxy)=BY_> Pxy(z,y)logW(ylz), (8

reEX yey

B > 0 being a free parameter, we extend this to a parametric
family of decoders, where 3 controls the skewness of the pos-
terior [11]. In particular, 5 — oo leads to the (deterministic)
ML decoder, denoted by g™!(-). Other interesting choices are
associated with mismatched metrics,

9(Pxy) =8> Pxy(z,y)logW'(ylz), (9

TEX yeY
W' being different from W, and

g™ (Pxy) = BIp(X;Y),

which is the stochastic version of the well-known universal
maximum mutual information (MMI) decoder [24], which has
been recently proven to be universal in a typical error exponent
sense [17]. The MMI decoder is approached by letting 3 — oo
in (10).

The average probability of error, associated with a given
code ¢, and the GLD, is given by

Ple) =57 30 S0 3 Wiglan)

m=1m'#m yeYyn

(10)

exp{ng(Pr,, y)}

= . (11)
M
Z'fh:l eXp{?’lg(Pmﬁ“y)}
The n-length error exponent of code ¢, is defined as
1
En(en) = —- log Pe(en). (12)

Let R = lim,,_, o %1og M, be the rate of the code in bits per
channel use. An error exponent E(R) is said to be achievable
when there exists a sequence of codes {¢,}>2; such that
liminf,, o Fn(c,) > E(R). The channel capacity C is the
supremum of the code rates R such that there exists a sequence
of codes {¢,}%2, for which Ps(c,) — 0.

For a given code ensemble, the RCE is defined as

1
Freo(R,Qx) £ liminf - log E[P:(C,)] (13)

For GLD, the RCE was derived by [23] (see also [20]) and is
given by

Eree(R, Qx)

= min ~_ min _
Pxy:Px=Qx Pxy:Px=Qx,Py=Py

+ | Ip(X,Y) + [Ep[log W (Y| X)]

D(Pxy||Qx x W)

~Epllog W(Y|X)]], —RL (14)

and was shown to coincide with the constant composition
exponent for ML decoding.

For ML decoding, Csiszar and Korner [8] proved the
existence of a constant composition code with exponent

& (R, Qx) = gg% D(Pyx||W|P)+ [I(X"; X,Y) - R]
(15)
and
Tac = { Pxxiy € P(X x X x ¥): Px = Pxr = Qx,
Eplog W (Y|X")] = Epllog W(Y|X)], Ip(X; X') < R}.
(16)

The Csiszar and Korner exponent, is known to be at least
as large as the RCE and the expurgated exponent for constant
composition codes derived by Csiszar, Kérner and Marton [25]
defined as

cc _ : / Ly
ckm(R7QX)_I(XIB%/I;SRE[dB(X7X)]+I(X7X) R,
a7
where dg(+,-) is the Bhattacharyya distance defined as
dp(z,2') = —log Y V/W(yle)W(yl).  (18)

yey

For GLD, Merhav provided an expression for the expurgated
exponent for constant composition codes [20, Eq. (36)], given
by

E(R = i
(R, Qx) peco@ll

+Ip(X; X') ~ R},

{F(PXX/, R)
(X;X")<R

(19)
where for Qx € P(X),A € R,d € Q, we define

F(PXX/7 R) £ Pmin

Y|X X/

{D(Pyix IW1Qx) + Ip(X'; Y] X)

+ max{g(Pxy), o, Py)} —g(Pxy)lefo (Q0)
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and
(R, Py) = max (9(Pxry) —Ip(X';Y)) + R.
PX’lY:PX’:QX’
Ip(X/3Y)<R
2y
For a given code ensemble, the TRC defined as
1
Ewe(R, Qx) = liminf ——Ellog P(Ca)]  (22)
n— oo n

which is known to be strictly larger than the RCE for the same
ensemble at low rates. In addition, Merhav also provided an
expression for the TRC for the constant composition ensemble
and GLD [11, Eq. (18)]

E.(R, = i I'(Pxx/,R
tre(R, Qx) PXX/EQ(Q;I)l:IIr;(X;X’)§2R{ (Pxx:, R)
+Ip(X; X') — R} (23)

and showed that for GLD E{S(R,Qx) < EE(2R,Qx)+ R;
this inequality holds with equality for ML decoding.

In the next sections, we introduce RGV codebook ensemble
and derive concentration properties of the error exponent (12)

of sequences of RGV codes C,, in the asymptotic regime.

III. RGV RANDOM CODEBOOK ENSEMBLES
AND PROPERTIES

A. RGV Random Codebook Ensemble

In this section, we describe basic RGV codebook construc-
tion as well as some of its properties. The RGV codebook
was first introduced in [7], which extended code constructions
that attain the Gilbert-Varshamov bound on the Hamming
space [26], [27]. The RGV construction is a randomized
constant composition counterpart of such codes for arbitrary
DMCs and arbitrary distance functions.

Definition 1: Let Q) be the set of bounded, symmetric, and
type-dependent functions d(-,-) : X" x X" — R, i.e., bounded
functions that satisfy d(x,z’) = d(a’, ) for all x,x’ € X™,
that depend on (2, ') only through the joint distribution Py,
and that are continuous on the probability simplex.

We refer to d € Q2 as a distance function, although it need
not to be a distance in the topological space (e.g., it may be
negative). Some examples of such distance function include
Hamming distance, Bhattacharyya distance, and equivocation
distance [7].

The RGV code ¢, = {x1,x2,...,xp} € X" with M
codewords of length n is constructed such that any two distinct
codewords x, &’ € ¢, satisfy d(x,z’) > A for a given
distance function d(-,-) € 2 and A € R. This guarantees that
the minimum distance of the codebook exceeds the minimum
distance A. The construction depends on the input distribution
Qx € Pn(X) and is described by the following steps:

1) The first codeword, x1, is drawn equiprobably from

T(Qx);

2) The second codeword, xo, is drawn equiprobably from
T(Qx,w1> = {ii’ S T(Qx) : d(a_:,:cl) > A} 24)

=T(Qx)\{Z € T(Qx) :d(Z,x1) <A},
(25)

i.e., the set of sequences with composition (x whose
distance to x; exceeds A;

3) Continuing recursively, the ¢-th codeword x; is drawn
equiprobably from

T(Qx,z} ")
£{zeT(Qx) d@ x;)>A,j=12,...,i—1}
(26)
=T(Qx, 2z )\ {Z € T(Qx, 217?)
rd(Z,xio1) < A} (27)

where for j < k, ar:é€ = (xj,...,x) is a shorthand
notation to denote previously drawn codewords.

This recursive procedure does not necessarily guarantee that
M = e™® codewords have been obtained. As [7, Theorem 1],
in order to ensure that the above procedure generates the
desired number of codewords, it suffices to choose R such
that, for some 6 > 0,

(28)

R < min

= I(X;X') - 20.
Py x1€Q(Qx):d(Px x/)<A

For a given RGV code with rate R, type (Jx, distance
function d, and minimum distance A, we define the RCE
associated with decoding metric g as

1
Ergv(R7 QX7ga da A) £ liminf —— log]E[Pe (Cn)] (29)
n—oo n

rce

and the TRC error exponent associated with decoding metric
g as

1
E8(R,Qx,g,d,A) 2 liminf ——E[log P.(C,)], (30)
n

trc
n— 00

where the expectation is with respect to the randomness of the
code C,,.

The main result of [7] is that for ML decoding, and suitably
optimized distance function and minimum distance, the RCE
of the constant composition RGV ensemble is equal to the
Csiszar and Korner exponent (15). In this paper, we study
the TRC of the RGV ensemble with GLD. One of the
main results of the paper is to provide a generic expression
for Fi% (R,Qx,9,d,A) as a function of the RGV code
parameters. In addition, we show that

Ei (R, Qx,9,d,A) = E(R, Qx).

for a suitable choice of the RGV ensemble parameters.
While E'8Y(R,Qx,g,d,A) potentially includes the asymp-

rce
totic performance of relatively poor codes in the ensemble,
E2(R,Qx,g,d,A) provides the expected exponent. Hence,

trc
E2Y(R,Qx,g9,d,A) is the relevant exponent of interest.
In addition, we provide bounds on the concentration rates of
the lower and upper tails of the error exponent of RGV codes.
We show that the lower tail decays exponentially while the

upper tail decays double-exponentially.

3D

B. Properties of RGV Codebooks

In this subsection, we introduce several technical results
characterizing the key properties of the generalized RGV
construction. We begin by restating some known properties
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from [7]; we will then introduce a number of other properties
that will be helpful in the derivation of our main results.

Lemma 1 [7, Lemma 1]: Under condition (28), for some
0 > 0 and :n’fl occurring with non-zero probability (or
d(xg,x;) > AVE, L € [i — 1], k # 1), we have that

(1= e )T (@Qx)|SIT(Qx, 2y M) <IT(Qx), Vi €[M].
(32)

Lemma 2 [7, Lemma 2]: Under the condition (28), for

any k,m € [M]|,k # m and x,x,, € T(Qx) such that
d(xy, ) > A, then we have
1—462 o
e PSP Xy =xp, Xy =
@) | |

1

SO—emerooE O

while P[ X = x, X, = @] = 0 whenever d(xy, ) <
A, where,

efné

A
U

(34)

Lemma 3 [7, Lemma 4]: For any message index m, the
marginal distribution of codeword X ,, is P(x,,) = m
for ., € T(Qx).

In order to derive the TRC and convergence properties of
the RGV code ensemble, we need to derive new properties
of this random codebook. Some properties of the pairwise
independent fixed-composition code ensemble [11], [15] are
proven to hold for the RGV codebook under some extra
conditions by other proof techniques. First, the following
lemma can be easily proved using the same arguments as [7].

Lemma 4: Consider the generalized RGV construction with
the rate R satisfying (28). Then, for any A C [M] and any
rate R satisfying (28) for some J > 0, under the condition
that mink,leA;k# d(wk, acl) > A, it holds that

1
P[ (1{Xi= mk}} S L AT(Q

ke A

oA &

In addition, if ming jc 4.k d(xy,x;) < A, it holds that

IP’[ N {Xk= mk}} -

ke A

(36)

Furthermore, if miny, ;e(as):6-41 d(Tk, 1) > A for any M’ <
M, it holds that

1
N {Xn mm}} > Faam: 6D
LE ! T
In general, (37) does not hold for any A C [M] as (35), but

it holds for the class of subsets {[M']|}ar<n. If A = [M],
we obtain both upper and lower bound on P [ Ny, e[M] {Xm =

xm} .

C(Jmpared with Lemma 2, (37) is tighter at M = 2 if
{k,m} = {1,2}. However, Lemma 2 is more general, i.e.,
it holds for any subset {k,m} : (k,m) € [M]x[M], k # m}.

Proof: See Appendix A. ]

Denote by

I(m,m’) £ ]1{(a:m,a:m/) S T(PXX/)}. (38)

Then, the following result, whose proof can be found in
Appendix B, holds.

Lemma 5: Let Pxx/ be a joint-type in Q(Qx) such that
d(Pxx) > A. Define

o |T(Pxx)|
7(Qx)[?
Then, under the condition (28) and d(Pxx/) > A, for any

)
two pairs (4,7), (k,1) € [M]? such that (i,5) # (k, 1), it holds
that

L(Pxxr) (39

(1 —462)e 2 L(Pxx) < E[Z(i, )]
1

S Gy Pxx), (40)
and
BT € Gpmmyr Lo (Pxx). @D
This implies that
BIZ(i.j) = exp{-nlp(X: X)) @)
E[Z(i,/)Z(k,1)] < exp{—2nIp(X;X")}.  (43)

C. Useful Properties of Type Enumerators

In this section, we state some important properties of the
type enumerator of RGV codebooks. For a given joint-type
Pxx: € Q(Qx), the type enumerator N (Px x) is defined as
the number of codeword pairs with joint type Pxx, i.e.,

NPxx) 2> Y U{(xm,xm) € T(Pxx)} (44)
m m'#m
= Y ZI(mm), (45)

(m,m")€[M]3

where Z(m,m’) is defined in (38).

Lemma 6: Fix arbitrary small positive numbers 6 > 0 and
e > 0. Let Pxx’ € Q(Qx) be a joint distribution that satisfies
Ip(X;X') < 2R — ¢ and d(Pxx+) > A. Define

E(Pxx) = {Cn i N(Pxx/) < (1 —462)e"2n

xexp{n[QR—Ip(X;X')—s]}}. (46)

Then, for any rate R satisfying (28), it holds (as n sufficiently
large) that

P[E(Pxx)]
< 1
— (1 _ 6—ns/2)2

48
e _
e ne/2

{(1 —462)%(1 — e—n9)?

o40n
-1 0 47
e )
as n — oo for any fixed ¢ > 0.
Proof: See Appendix C. [ ]
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Lemma 7: Let € > 0 be given and assume that the con-
dition (28) holds. Then, for any Pxx: € Q(Qx) such that
Ip(X; X') < 2R and d(Pxx') > A,

IF’[N(PXX/) > e"(2R71P(X;X/)+E)]

é exp{ _ en(2R71p(X;X’)+a)} (48)
< e . (49)
Proof: See Appendix D. [ |

Lemma 8: Let ¢ > 0 be given. Then, for any Pxx: €
Q(Qx) such that Ip(X;X’) > 2R —¢ and d(Pxx/) > A
such that the condition (28) holds,

P[N(Pxx/) >e™] < exp{ —e™} (50)
<e e, (51
Proof: See Appendix E. ]

Lemma 9: For any Pxx' € Q(Qx) such that Ip(X; X') >
2R and d(Pxx/) > A such that the condition (28) holds,
we have

]P’[N(PXX/) > 1] = exp{n(2R — Ip(X; X"))}. (52)

Proof: See Appendix F. ]
The following lemma is a key result for showing the
exponentially-decay of the lower tail decay.

Lemma 10: Let Pxx/ € Q(Qx) such that d(PXX/) > A.
Then, under the condition (28), we have

P[N(Pxx:) > e™] = e "EEPxxr9)  ys e R, (53)
where
E(R,P,s)
_ {[IP<X; X)=2R], PR-Ip(GX)) >s - o0
—+00, 2R —Ip(X; X))y <s
Proof: See a detailed proof in Appendix G. ]

The following lemma is a key enabling result to attain
the double-exponential bound for the concentration proper-
ties of the random coding exponent in the RGV codebook.
As opposed to the independent fixed-composition ensem-
ble [15], a direct application of Suen’s correlation inequality as
[15, Proof of Lemma 2] does not give the double-exponential
bound. More specifically, since all RGV codewords are cor-
related, the number of adjacent pairs of a fixed pair (m,m’)
is now e?"f which causes the term in [15, Eq. (B.18)] to
be equal to 1. For the independent fixed-composition code
ensemble, this term is ™.

To overcome this difficulty, we develop another proof for
this lemma which is not based on the Suen’s correlation
inequality. See Appendix H for a detailed proof.

Lemma 11: Let ¢ > 0 and D C {Pxx € Q(Qx) :
d(Pxx) > A} be given. Then, under the condition

min_ Ip(X;X') -2 <R

XX/E
< min Ip(X; X') — 26, (55)
Py x1€Q(Qx):d(Px x/)<A

or

min _Ip(X; X")

x x!' €

Rgmin{

Ip(X; X',

— min
Py x1€Q(Qx):d(Px x/)<A

min

IP(X;X’)} —20  (56)
Py x1€Q(Qx):d(Px x1)<A

for some § > 0, we have

min P{N(Pxx) < BN (P

Py /€D
(6"(3—25)7 en(ZR_mianx’ eb IP(X;X/))) }
(57)

Observe that for d(Pxx/) = —Ip(X;X') and A = —(R+
24), the condition (55) holds since

< exp{ — min

min _Ip(X;X') —2§

Py x1€D
< max Ip(X; X')— 26 (58)
Py xr:d(Py x1)>A
= max Ip(X; X')—26 (59)
PXX/ZIP(X;X/)<*A
< (A +20), (60)
and
min Ip(X;X')— 26 (61)
Px xr:d(Px xr)<A
= min Ip(X; X') - 26 (62)
Py xriIp(X;X)>—A
= —(A +26). (63)

Hence, the double-exponential expression in (57) holds for this
special distance d and A. The condition (56) also holds for
many other classes of distances d and different values of A.

Finally, we state the following key lemma, whose proof can
be found in Appendix I.

Lemma 12: Recall the definition of I'(Pxx-, R) in (20).
We define the expurgated error exponent for RGV ensemble
as following:

E;gév(R’ QX7 9, d7 A)

>

{F(PXXH R)

= min
Py x1€9(Qx):d(Px x1)>A,Ip(X;X)<R

(XX - R}. (64)
Let
Ay ={ P € 0(Qx) s dlPrx) > AT (X X') > 2R},
(65)

As = {PXX’ € Q(Qx) : d(Pxx+) > A, Ip(X; X') < 2R,

F(PXX/,Rfé)JrIp(X;X/) —R< E0+€}, (66)

and define
Fort () {N(Pxx)=0}. (67)
Py x1€A1UA,
Under the conditions that R < E!2¥(R,Qx,g,d,A) and
min Ip(X; X")

Py x1€Q(Qx):d(Px x/)<A
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max Ip(X; X7, (68)
PXX’GQ(QX) d(Px x1)>A
< Ip(X;X')~25 (69
PXX/EQ(QX):d(PXX/)SA
for some ¢ > 0, it holds that
P(Fo) > exp{ - enmaxpxx’6A2(2R71P(X;X’)5)}. (70)

Similarly to the preceeding discussion, setting d(Pxx-) £
—Ip(X;X’), we obtain that

Ip(X;X') > -4A, (7))

min
Py x€Q(Qx):d(Px x1)<A

Ip(X; X' < —A, (72)

max
Py x1€Q2(Qx):d(Px xr)>A
so (68) holds. For (69) being hold, it is required that R <
—(A +29).

In connection to Lemma 11, the proof of the related result
in [15, Prep. 6] cannot be applied here since it uses the Suen’s
correlation inequality, i.e. [15, Fact 3]. Since all codewords in
RGV ensemble are dependent, the number of adjacent nodes
in the corresponding adjacency graph is too big which makes
this type of arguments invalid. To overcome this difficulty,
in Appendix I, we develop a new technique. However, the
double-exponential constant in (70) is smaller than the one in
[15, Prep. 6] for the fixed-composition code ensemble.

IV. TyrPicAL RANDOM CODING EXPONENT OF
GILBERT-VARSHAMOV CODES

In this section, we show an expression for the TRC of the
RGV code ensemble. The expression, when optimized over
the distance function d(-, -) and minimum distance A, recovers
Merhav’s expurgated exponent for the GLD proposed in [20].
The main result, proven in Section IV-A, is stated in the
following.

Theorem 1: Let Qx € P(X),A € R,d € Q. Recall the
definitions of I'(Pxxs, R) and a(R,Py) in (20) and (21).
Then, for any R satisfying the condition in (28), the typical
random coding exponent of the RGV code ensemble with the
GLD is given by

= min

Pxr xPx1=Px=Qx,
Ip(x;x/)ng,d(PXX/)>A

{F(PXX/,R) +IP(X;X/) - R}

(73)

Before proceeding with the proof of the result, some dis-
cussion is in order. Observe that if we remove the constraint
d(Pxx/) > A (i.e., no constraint on the distance between
each codeword pair), the expression of the TRC for the RGV
ensemble code in (73) becomes the TRC of the constant
composition code ensemble with composition () x under GLD
decoding in [11, Eq. (18)]. In addition, as shown below, when
the distance function d(-,-) is optimized, and A is chosen
appropriately, the TRC expression (73) recovers Merhav’s
expurgated ESS(R, Qx) defined in (19), which is at least as
high as the maximum of the expurgated exponent and the
random coding exponent.

The following results are similar to ones in [7, Section IV].

Corollary 1: Let € > 0 be given, and let R, P, and d € ()
be given. The TRC of the generalized RGV construction
with sufficiently small 6, d(Pxx/) = —Ip(X;X'),A =

—(R + 26), sufficiently large n, and GLD rule is such that

Eite (R,Qx,9.d,A) = EE(R, Qx), defined in (19).

Proof: First, it is easy to see that the choices d(Px x/) =
—Ip(X;X') and A = —(R + 29) are valid for all R in the
sense of satisfying the rate condition in (28) (see proof of [7,
Cor. 2]). Now, under the same choices, we have

E%(R,Qx.9,d,A) (74)
d(Px x1)=—Ip(X;X"),A=—(R+25)
{F(PXX/,R) +IP(X;X/) - R}

= min
PX’\X’PX’:QX’
Ip(X;X')<2R,Ip(X;X')<R+26§

(75)
R}. (76)

= min
PyrxPxr=Qx,
Ip(X;X')<R+25

{F(PXX/,R) +IP(X;X/) —

The result follows by taking 6 — 0 and using the continuity

of E§1rgcv(R7 QXagad7A) in R. u
Corollary 2: The TRC of the generalized RGV construction
with sufficiently small §, d(Pxx/) = —Ip(X;X'),A =

—(R+2)), sufficiently large n particularized for ML decoding
is such that

rgV(R QXa ml d A)

trc

d(Py x1)=—Ip(X;X'),A=—(R+20)
> max { Efe, (R, Qx ), Eqin (R, Qx) } (77)
where
E5(R.Qx) = min D(Py x| W]Qx) + [[(X:Y) ~ R)..
(78)

is the RCE for ML decoding and E (R, Qx) is the Csiszér-
Korner-Marton expurgated exponent defined in (17).

Proof: We lower bound FEit (R,Qx,g,d,A) for ML
decoding by the typical error exponent for a sub-optimal GLD
based on g*™ (P) = Ip(X;Y), which is the stochastic mutual
information decoder defined in (10). In this case, it can be

ready verified that o(R, Py) = R, which yields

™ (Pxx/, R) = Pn‘1in D(Pyx|[W||Qx) + Ip(X';Y|X)
Y| XX/

+ [max{Ip (X Y), B} — Ip(X';Y )]+ 19)
Hence, we have
Ef (R, Qx, g™, d,A)
d(Px x/)=—Ip(X;X'),A=—R
> B (R, Qx, g™, d, A) 80)
d(Px x/)=—Ip(X;X'),A=—R
= min D(P W
PX’Y\X Ip(X;X")<R,Pxr=Px=Qx ( Y|X|| |QX)
+Ip(XY|X) + Ip(X; X)
+ [maX{IP(X' Y)7 R} — IP(X,;Y)]+ - R (81)

= min
 Pyryixp(XiX)<R,Py =Px=Qx

+ Ip(X X|Y) + Ip(X:Y)

D(Py x|[|[W|Qx)
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+ [max{Ip(X;Y),R} — Ip(X";Y)]; — R (82)
= PX/Y‘X:IP(X;XI,T)HSHR’PX(:PX:Q D(Py|x[[W|Qx)
+ Ip(X'; X|Y) + [max{Ip(X;Y),Ip(X";Y)} — R,
(33)
Z PX/Y‘X:Ip(X;XI’I)ngnR,PX/:PX:QX D(PY‘X”W|QX)
+ Ip(X; X|Y) + [Ip(X;Y) — R+ (84)
= Eice(R, Qx), (85)

where (80) follows from (76), and (81) follows from
Theorem 1 and (79).

Similarly, by using the same arguments as [11, p.5], for ML
decoding, we have

Ergv(R> QX » 9, d7 A) = inf

trc
PX/Y|X€s(R,QX)

D(Pyx[W|Qx)

+Ip(X;X,Y)—R (86)
where
S(R,Qx) = {Pxy|x : Ip(X;X') < R, Px, = Px = Qx,
EpllogW(Y[X")] > max{Ep[logW (Y |X)],a(R, Py)}}
(87)
and
a(R, Py) = sup Ep[log W (Y]X)).
Pxr )y Ip(X";Y)<R,Px=Px/=Qx
(83)
Then, we have
B (R, Qx, g™, d,A)
d(Pyx x/)=—Ip(X;X'),A=—R
> inf D(PY|X||W|QX)+IP(X’;X,Y)—R (89)
Pxrvixet,,
ckm(R QX) (90)
where 7 defined in (16). Here, (89) follows from (86), and
(90) follows from [8, Lemma 4]. [ |

The following proposition reveals that the above choice
f (d,A) is a choice that maximizes the TRC given in
Theorem 1.

Lemma 13: Under the setup of Theorem 1 with

Ip(X; X') =26 1)

< min
Py x1€Q(Qx):d(Px x/)<A

for some § > 0, we have
{I%;Y(R Qx,g,d A)
< Ergv(Ra QXa g, d7 A)

trc .
d(Py x1)=—Ip(X;X'),A=—(R+26)

92)

Proof: From (91), for all joint type Pxx' € Q(Qx) such
that d(Pxx/) < A, we have R + 2§ < Ip(X;X’). Hence,
if R4+ 25 > Ip(X;X’), it holds that d(Pxx/) > A. This
means that

{PXX’ S Q(Qx) : IP(X;X/) < R+25}

T
] EZ(R)
1.6 % — Ef(R)
...... Emln(R)
1.4 som Be(R) |
B (R)
e TV
1.2 + EE(R) |
g 1 b
[="
»
s
5 08 .
= .
0.6~ .
0.4 i
0.2 i
0 | | | | | [ + +
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
R
Fig. 1.  Error exponents for the Z-channels with crossover probability

0.001 and ML decoding.

C {PXX’ c Q(Q)(> : d(PXX/) > A} 93)

It follows from (93) that for ¢ sufficiently small,

_ min {T(Pxxr, R) + Ip(X; X') - R}

Pyi|xPx/=Px=Qx.
Ip(X;X/)<2R,d(Py x1)>A

94
< min {F(PXX/, R) + Ip(X; X') — R}
PX’\X’PX’:PX:QX’
Ip(X;X')<2R,Ip(X;X')<R+28
95)
- min {F(PXX/, R) + Ip(X; X') — R}
PX/\X:PX’:PX:QX’
Ip(X;X')<R+26
(96)
- E‘EECV(R’ QXagvdvA) )
d(Px x1)=—1Ip(X;X"),A=—(R+24)
CH)

where 97 follows from the continuity of

E&'(R,Qx,g,d,A) in R and (76). [

As in [7], the choice d(Pxx/) = —Ip(X; X’) is universally
optimal in maximizing the TRC in Theorem 1 (subject to (28)),
in the sense that it does not depend on the channel or input
distribution.

In Fig. 1, we plot various error exponents for the
Z-channel with crossover probability 0.001 and let Qx(0) =
Q@ x (1) = 1/2. This example was considered in [15] and [20].
Specifically, for reference we plot the random coding expo-
nent ES (R), the expurgated exponent ESS(R), and the

rce

TRC E{S(R) for constant composition codes. For the RGV

trc
ensemble exponents, we choose d(Pxx/) = —Ip(X;X’) and

A = —R so as to achieve the largest possible exponents.

We plot the corresponding random coding exponent EX8Y(R)

and its corresponding TRC F;&' (R) and illustrate that they

trc

both coincide with Merhav’s expurgated exponent ESS(R).

Authorized licensed use limited to: CAMBRIDGE UNIV. Downloaded on January 24,2024 at 08:31:21 UTC from IEEE Xplore. Restrictions apply.



828 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 2, FEBRUARY 2024

A. Proof of Theorem 1

The proofs for both upper and lower bounds follow similar
lines to those in [11]. The main difference is the dependence
among codeword induced by the RGV ensemble. In order
to analyze this dependence, we developed new concentration
inequalities and applied generalized versions of Hoeffding’s
inequality.

1) Lower Bound on TRC: First, we prove the following
result.

Lemma 14: Recall the definition of «(R, Py) in (21). Fix
an € > 0. For any m € [M], let

2 N7 enoPxi), (98)
m#m
and
Am 217, (y) < exp {na(R — €, Py)}} (99)

Then, under the condition (28), it holds that

ne e n(er) —ne
(& |:1_1—TL5_6 (1+n6):|}

]P)[Am} S exp { - —e
(100)

for all m € [M].
Proof: See Appendix K. [ |
Proposition 1: Under the same assumptions as Theorem 1,
the RGV code ensemble satisfies

‘f!igcv(R QXagvd A)

> min
Py x1€Q(QX),
IP(X;X’)§2R,d(PXX/)>A

{F(PXX/,R) +Ip(X;X) — R}.

(101)
Proof: Using the GLD, the error probability is

Cn) fz > W(ylem)

’#myeyn
% eXp{ng( )} §
xp{ng(Po,,.v)} + X s xP{ng (P )}
From (102), we obtain

E [Pe(Cn)]

<E|3 S S WX > win {1

m=1 y m’/#m

m#m € no(Pxs0) }:|

ZZW(y|Xm) > min{l,

m=1 y m/#m
A(Xm, X, 1)>A

(102)

ny(Px o)

ng(me W) 4+ Z

1
—E|—
B

’I‘Lg(Px ’ y)
9P y) +> e9(Px 5 ) H’

m#m
where (104) follows from the fact that
MiNgy s AT, Tr) > A for any code C, =
(z1, T2, -+ ,xp) in the RGV codebook ensemble.

(103)

(104)

Now, we use similar arguments as [11] with some changes
to cooperate the condition d(x,,, ;) > A in the sum in (104).
From (104) and Lemma 14, for any € > 0, we obtain

E[Fe(Cn)]
M
1 .
]E{M Z ZW(y|Xm) Z mm{l7
meh Y MBS HTON

ng(Px_, y)
> - }} . (105)
eng(me,y) + ena(R—e,Py)

From the method of types [28] we have that

—n[H (Pagy )~ H(Qx)+D(Pay lQx xW)]

W(ylzm) =e
(106)
Thus, it follows from (106) that
M
S S Wyle,) Y min {1,
m=1 y m/#m
d(@m.@,, /) >A
(Pm ’ y)
_°© i (107)
ng(Pmm’y) + ena(R—e,Py)

S

>

m/!#£m
d(@m.@,,/)>A

(ylzm) exp{ — n[max{g( Pe, y)s

:Z%:

a(R=2.P)} = 9(Pa,)] | } (108)
M
=33 X ew{(-n[H(E,,) - HE@x)

Az, 1) >A

+D(Pa,, y|Qx x W)]) }exp { = n[max{g(P,,y).
(R =&, Py)} = g(Pa,, )] |
= Z N(Pxx)

Py x€Q(Qx):d(Px x/)>A

X Z exp {nHp(Y|XX")} exp{( -

Py xx/
— H(Qx) + D(Pxvy||Qx x W)])}
x exp { — nlmax{g(Pxy),
a(R—e,Py)} — g(PX’Y)]+}

- > N(Pxx)

Py x1€Q(Qx):d(Px x/)>A

( — Hp(Y|XX') + H(Pxy)

(109)

TL[H(PX}/)

(110)

X exp{ —n min
Y|X X/

— H(Qx)+ D(Pxy||Qx x W)
+ [max{g(Pxy),a(R - =, Py)} = g(Pxv)], ) }

(111)
= >

Py 1 EQ(Qx):d(PXX/)>A

N(Pxxr)
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X exp{ —n min (D(Pyx|[W|Qx) + Ip(X";Y|X)

Py xx/

+ [max{g(Pxy), a(R — &, Py)} = g(Pxy)],) }

(112)
= > N(Pxx-)
Py x1€Q(Qx):d(Pxxr)>A
x exp{—nI'(Pxx/,R—¢)}, (113)

where (109) follows from (106), and (113) follows from (20).
Here, the joint type enumerator N (Px x-) has been defined in
(45). From (105), (113), and (45), we obtain

Eflog P (C.)] < log (E[P.(C.)])

Z E[N(Pxx/)]

PXX/GQ(Qx):d(PXX/)>A

X exp{ —nF(PXX/,R)}> —nR, (115)

(114)

<log

where (114) follows from the concavity of log z in (0, c0) and
Jensen’s inequality.
Now, for any Pxx € Q(Qx) such that d(Pxx/) > A,
from Lemma 5,we obtain
M
E[N(PXX/)] = Z Z P[(Xm,Xm/) € T(PXX/)]

m=1m/'#m

(116)
= n(R-Ip(X: X)) (117)
Hence, from (115) and (117), we obtain
E[log P.(Cy)]
< log Z oM (2R—Ip(X;X"))
Px x1€Q(Qx):d(Px x1)>A
x exp { —nF(PXX/,R)}> —nR. (118)

From (118), we finally have
ErgV(Ra QXa g, d7 A)

trc

> min
Py x1:iPx1=Px,
Ip(X;X/)<2R,d(Py x/)>A

{F(PXX/,R) +Ip(X; X)) — R}.

(119)

This concludes the proof of Proposition 1. ]
2) Upper Bound on TRC:
Proposition 2: Under the same assumptions as Theorem 1,
the RGV code ensemble satisfies

Eire (R,Qx,d, A)

trc

< min
Py x1€Q(Qx):
IP(X;X’)SZR,d(PXX/)>A

{F(PXX/,R) +Ip(X; X)) — R}.

(120)

Proof: The following proof follows similar lines to the
proof in [11, Sect. 5.2]. However, the same proof cannot be
used for the RGV ensemble. In addition to the difference
in proofs of Lemmas 6 and (159), we also need to make

additional changes in since the decay rate of P[€(Pxx/)] in
Lemma 6 is not exponential as [11, Eq. (48)].

Given a joint-type Pxx' € Q(Qx) such that Ip(X; X') <
2R — ¢ and d(Pxx/) > A, let us define

Z’rnm’ (y) = Z eXP{”g(PXﬁ“y)}a

m#m,m’

(121)

and

Gn(Pyixx1) = {Cn : Z Z Z(m,m')
m m/#m
<

YET (Pyxx/)
> (1 —46%)e™ %" exp{n[2R — Ip(X; X') — 3¢/2]}

x |T<PY.XX/>|}7

where Z(m,m’) is defined in (38). Recall the definition
of £(Pxx) in Eq. (46) Lemma 6. Then, similarly to [11,
Sect. 5.2] we have

P[Gy(Py|xx/) NE(Pxx/))

< P{Z Y I(m.m)

m m'#m

H{Zmm (y) < exp{n[a(R + 2¢, Py) + €] }}

(122)

>

Y€T (Py | xx)

1{ Zm (y) < (1 — 462)e 2" exp{n[a(R + 2¢, Py) +¢]}}
< exp{n[2R — Ir(X; X') = 3¢/2]}.|T (Py|xx)|;
N(Pxx) >(1—46%)e™ 2" exp{n|2R — Ip(X; X') — €]}

(123)

< P{Z > Z(m,m')

m m/#m

>

yeT (Pyxx1)
U Zy (y) > (1 = 407)e™ 2" exp{nfa(R+2¢, Py)+e]}}
> (exp{n[2R — Ip(X; X') — €]}
—exp{n[2R — Ip(X; X') — 35/2]})'|T(PY\XX’)|7
N(Pxx/) > (1 —482)e 2" exp{n[2R — Ip(X; X') — €]}
(124)

< P{Z Y I(m.m)

m m'/#m

>

YT (Py | xx/)
W Zr (y) > (1 — 407 )=
x exp{n[a(R + 2¢, Pxy) + €|} }
(exp{n[2R — Ip(X; X') — €]}

Vv

—exp{n2R — Ip(X; X') — 3¢/2]}).|T (Py|xx")|

(125)
_ Zm Zm’;ﬁm ZyET(Py|XX/) C(m’ ml’ y) (126)
exp{n[2R — Ip(X; X') — e[} T (Pyxx/)|’
where (126) follows from Markov’s inequality and
C(mu mlv y) £ ]P)[(va Xm’) € T(PXX’)a me’(y)
> (1 —462)e™ 2 exp{n[a(R + 2¢, Py) + e} (127)
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- ¥

(em 2, 1)ET (Py yr):
d(@m 2, )>A

X P[me' (y) > (1 - 45721)672(%
x exp{n[a(R + 2¢, Py) + €]} X =T, X v

P(xp, T )

::Bm/].

(128)

Here, (128) follows from the fact that P(x,,, ) = 0 if
d(®m, Tm) < A by Lemma 2.

Now, given a fixed pair (&, €,,/) such that d(x,,, T;,/) >
A, define

PX’|Y = argmaXP[N(PX/‘Y)

Pxry
> (n+ 1)V — 462)e”
JFé‘*g(]DX’Y }|Xm:mmaXm’:mm/]v

0 exp{n[a(R + 2, Py)
(129)

where

N(Px:y) :=

o 1{(xs

m#m,m’

T(Pgy)}.  (130)

Then, we have

P[Zm (y) > (1 — 462 )e™ "
x exp{n[a(R + 2¢, Py) + €]} Xm = Tm, X = T/

= IP’{ Z exp{ng(Px.. 4)} > (1 —462)e= %"

m#m,m’
x exp{n[a(R + 2¢, Py) + €]} X m = @y, X = a:m/]
(131)

(Px1)y) exp{ng(Px'y)}

< IP’{ >N
Pxry
> (1 —46%)e™®
x exp{n[a(R + 2¢, Py) + €]} Xom = Tm, Xy = zm/]
(132)

(Pxry) exp{ng(Px-y)} > (1 — 467)e” >

P >N

Pxry
x exp{n[a(R + 2¢, Py) + e]HXm =T, Xy = zcm/]

(133)

max P[N(Px/y)exp{ng(Px/y)}
X'y
> (n+ 1) ¥V — 452)e2%m
x exp{n[a(R + 2¢, Py) + €]} Xm = Tm, X = Ty

(134)
= max P[N(Px/y) > (n+1)71¥IVI(1 — 452)e= 2"
XY

x exp{n[a(R + 2¢, Py)

+e—g(Pxy)} Xm = Ty X = ] (135)
=P[N(Px/y) > (n+1)7 ¥V (1 — 467)e=20n

x exp{n[a(R + 2¢, Py)

+e—g(Poy )} Xm = m, Xow = 2], (136)

where (136) follows from (129).

Now, for all m € [M], observe that

P[(Xmy) €T(Pxy)] = > P@z) (137)
m'ﬂbeT(PX’\Y)
[T (Px/|y)
L N L 138
T@Qx)] (13%)
=P, (139)

where (138) follows from Lemma [7, Lemma 4]. It is easy to
see that p does not depend on m.

Now, we consider two cases:

Case 1: Ip-(X';Y) < R+ 2¢. Then, we have

a(R+2e,Py)+e—g(Pxy)

= P -1 X/'Y
o B (9(Pxry) = Ip(X";Y))

Ip (X' Y)<R+2e

+ R+ 2 — g(Pxry) (140)
> g(P%ry) — Ip<(X;Y) + R+ 2 — g(Pxry)  (141)
=R+ 2e—Ip:(X";Y). (142)

On the other hand, if we let
A p
= — 143
V= T e (143)
we have
N e e (R—Ip=(X"3Y)) "
(M =2)y = ———5— (144)
It follows that
P[N(P%ry) > (n+1)7FIVI(1 — 452)e= 2

x exp{n[a(R + 2¢, Py)
+e— g(P;}/Y)]HXm =z, X, = acm/]
é P[N(P)*(’Y) > (M - 2)7€2nE’Xm =T, Xy = wm’]
(145)
where the last step follows from (144) and (142). Now, let

Zin £ ]l{(X,:,“y) S T(ley)}. Then, for all A C [M} \
{m,m’}, under the condition (28), by Lemma 4, it holds that

E|: H an|Xm = T, X —mm/:|

meA
- Z H 1{(zs,y) € T(Pxy)}
T1,L2, x| A MEA

X IP’{ () {Xm =2} X =, X = :er].
meA

(146)
Now, observe that

m {Xﬁl = iEm}|Xm =Ty, X = xm’:|

meA

P(nﬁleAU{m,m’}{Xﬁl = wﬁl})
_ (147)

]P(Xm = xmaXm’ = wm’)
1 1 1T (Qx)I® o5

< n (148
= [ = oy (T(QX>|AI+2> a0z ¢ 1
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where (148) follows from Lemma 4 and Lemma 2 with noting
that d(x,, Tm) > A.
Hence, it holds that

E|: H an|Xm :a:m,Xm/ _$m/:|
meA

: (1545) (( - ﬁn)w)

X Z H P m m’rl’b
T1,L2, LA MEA
< [ M@, y) € T(Pxy)} (149)
meA
- (5 13 #ix,
S \1-482 )\ (1 fefén Az ) L &
x H{(zm,y) € T(Pxv)} (150)
e20n 1
= (1 _452> (( — 5n)A|+2>
< [ P[(Xm.y) € T(Pxry)] (151)
meA
. » |A]
- (15) ’ (152

where (149) follows from Lemma 4 (under the condition (28)).
Hence, by applying Lemma 20, we have

P[N(Pxry) > (M = 2)ve* | Xy = @y, Xy = T
é exp{ o enRD(enaHenb)}

where D(pl|q) is the relative entropy between two Bernouilli
distributions, with success probability p, q, respectively, and
a & Ip(X;Y) — 2 + (1/n)log(l — e™) and b =
Ip«(X";Y) 4 (1/n)log(1—e~™°). Since b—a = 2¢, by using
the following fact [29, Sec. 6.3]:

(153)

D(al|b) > alog Sib—a

; (154)

we have
D(e=™[le™®) > e " [1+ =" ((b—a)n - 1)] (155)
= e mp (XY 2negpe (156)

From (153) and (156), for any pair (@, ) such that
(T, Tm) > A, we obtain

P[N(Pxry) > (M = 2)ve* | Xy = @y, Xy = T

< exp { — MBI (X/;Y))627L82n5} (157)
< exp { — 67271862”52%&?} (158)
:exp{—Qns}, (159)
where (158) follows from the condition Ip«(X';Y) < R+ 2e¢.

Case 2: Ip«(X';Y) > R + 2¢. For this case, for any pair
(T, Ty ) such that d(Tp,, ) > A, we have
P[N(P%ry) > (n+ 1) ¥IYI(1 — 452)e= 2
x exp{n[a(R + 2¢, Py)
+e— Q(P;('Y)]}‘Xm =L, Xy = wm’]

SP[N(P)*(’Y) > 1|Xm = T, X/ :xm/] (160)
S E[N(Pxy)| Xm = Tm, X = Tp/] (161)
= Z ]P)((Xm,y) GT(PX/y)|Xm::Em,Xm/::l:m/),

m#m,m’
(162)

where (160) follows from the fact that N(P%,y-) € Z,, and
(161) follows from the Markov’s inequality.
Now, by using (148) with A = {m}, we have

P|:{X7h = wﬁl}’Xm =T, Xy = wm’:|

1 1\ TQx)]? o5,
= Aoy (IT(Qx)3> T
. 1
~ Tl

From (162) and (164), for any pair (x,,,% ) such that
d(Tpm, Tm) > A, we obtain

(163)

(164)

PIN(Piy) > (n+ 1)~ (1
x exp{n[a(R + 2¢, Py)

— 4572,1)6726"

+e—g(Pxy )} Xm = T, Xy = @]
< (M —2)p (163)
= e(R—Ips(X"Y)) (166)
< e2me, (167)

where (166) follows from (139), and (167) follows from
condition Ip+(X';Y) > R+ 2e.

From (159) and (167), for any pair (2, €, ) such that
d(Tpm, Tm) > A, we have

P[N(P%y) > (n+1)71%1(1
x exp{n[a(R + 2¢, Py)
+€ - g(P)*(/Y)]}‘Xm - .’I}m,Xm/ = .’I}m/]
< e72me,

— 4(53)6726"

(168)
From (136) and (168), we obtain
P[Zym (y) > (1 - 467 )e >
x exp{n|a(R + 2, Py) + &)} X1 = @, Xy = T |
< e e (169)

where the constant in § does not depends on x,,,, T, .
It follows from (128) and (169) that
P[(Xnu Xm’) € T(PXX’)v me/(y) >

x exp{n[a(R + 2, Py) + €]}]

Z —2ne (170)

(em 2,1 )ET(Py 1)
d(em,z,,1)>A

>

P(xm, T e
(®m,@, 1)ET(Pyx x/)

1 S|
e
L—e™ ) |T(Qx)?
d(w7n,wm/)>A

~ _—nlp(X;X') _—2ne
£ emnIp(XiX') g=2ne.

(1 —46%)e=2n

IN-

—2ne

IN

(171)

(172)
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where (171) follows from Lemma 4. By combining (126) and
(172), we obtain

P[GE(Pyxx:) NE(Pxxr)] < e 2. (173)
On the other hand, by Lemma 6, we also have
Pr[EC(PXX/)} — 1. (174)

Now, for any fixed joint-type Pxx: € Q(Qx) such that
Ip(X;X') < 2R — ¢, define

ﬂ {Gn(Pyixx) NE(Pxx1)}.

Py x x/

Fn(Pxxr) = (175)

Then, from (173) and (174), for any fixed joint-type Pxx: €

Q(Qx) such that Ip(X; X’) < 2R — ¢, we have
PIF: (Pxx/)]
= U {G;(Pyixx) n€°(Pxx:)} U 5(PXX')]
L Py ixx
| (176)
<P| U (G(Prive) NEPrx)] + PlE(Pre)
L Py xxr
| (177)
< Y P[GE(Pyixx) NEX(Pxx)] + PIE(Pxx/)]
e (178)
< T (Pyxx)le™" +o(1) (179)
—0, (180)
which leads to P[F, (Pxx)] — 1 as n — oc.
Now, for a given code ¢, € F,(Pxx), define
V(e Pyixx:) = {(m,m’,y) : Zimm: (y)
< exp[n(a(R + 2¢, Py) + €)]}, (181)

and

Vm,m’(CmPY|XX') = {y : (mamlvy) € V(C'erPY|XX’)}'
(182)

Then, by definition of G, (Py|xx-) in (122), for any fixed
joint type Pxx/ € Q(Qx) such that Ip(X;X') < 2R — ¢
and d(Pxx+) > A, and for any ¢, € F,,(Pxx-), it holds that

Z ]1{(.’137,L,:13m/) S T(PXX/)}

o 1T (Pyixx') N Vim (Cn, Pyixx7)|
|T(PY\XXf)\
> (1—462)e” " exp [n(2R — Ip(X; X') — 32/2)].
(183)
Now, let
PYx = arg min {T'(Pxx/,R)
Pxx1Pxr=Px,
Ip(X;X)<2R,d(Py 1) >A
+Ip(X; X') — R}. (184)

Then, for any p > 1, we have
E[(Pe(Cp)) "]
—5|( X ¥ S wwix,)
m m'/#m y
. _op{ng(Px, )} )1/”}
exp{ng(Px,.y)} +exp{ng(Px, y)} + Zmm (y)

(185)
=re)(3 X ¥ S Wk
Cn

m m/#m Yy
x exp{ng(Ps,v)} )”P
exp{ng(Py,.y)} + exp{ng(Pe_,y)} + Zmm: (y)

(186)
ey X OTF

Px x1€Q2(Qx) ™M m/#m
1{(zm, m) € T(Pxx')}

<Y Y Wl

Py xx' y€T (Py | xx/)
y exp{ng( :zzm/y)} )1/p
exp{ng( mmy)} + exp{ng( mm/y)} + me’(y)

(187)
:gp[cn](;f DI

Py x€Q(Qx) m m'#m
]l{(:cm7:nm/) c T(PXX/)}

<Y Y Wl

Py xx' y€T (Py | xx/)

x exp{ng(Pa,, y)} )”ﬂ
exp{ng( wmy)}—l-exp{ng( x /y)}+me/( )

(188)
> ¥ el X

Cn€Fn (P} 1) m m’#m
{(zm, xm) € T(Pxx/)}

> 2

Py xx' Yy€T (Py | x x/ )V i/ (Cny Py | x x7)

x exp{ng(Pe,v)} )””
exp{ng( mmy)}—l—exp{ng( @,ry)} T L (Y)

(189)
= > Pl (;4

Cn€Fn(P% 1)
{(@m, zn) € T(Pxx)}
|T(PY|XX’) N Vm,m/(cna PY\XX’)‘
1T (Pyxx)|

x exp{ DBy x W] Qx)] + Ip (X' Y]X)

W(y|zm)

202 )

Py xxr m m/#m

1/p
+ [max{g(Pxy), (R + 2¢, PY)‘*‘E}—Q(PXIY)H})
(190)
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> ¥ oy X a-ae

Cn€Fn (P} 1) Py xx1
x exp [n(2R — Ip+(X; X') — 3¢/2)]

% exp{ —alD(Pyx [W1Qx)] + In (X5 Y]X)

1/p
T fmax{g(Pyy), a(R + 2. Py>+a}—g<PXfy>]+})
(191)

> (1462 )e P

PY\XX’

- P[fﬁ(PS“(X«)](

x exp [n(R — Ip«(X; X') — 3¢/2)]

exp{ = nlD(Pyx IW1Qx)] + I (X' Y1)

1/p
+ fmax{g(Pxy ), a(F + 2. Py>+e}—g<PX/y>]+})
(192)

= P[F:(Px x/)] (exp [(n(R—Ip-(X; X') — 32/2)]

1/p
x exp[—nI'(Pxx/, R+ 28)}) ) (193)

where (188) follows from Tonelli’s theorem [30], (190) follows
from (169), and (191) follows from (183), (193) follows from
d, — 0 and the definition of I'(Px x/, R).

From (193), it follows that

Egrch(R7 QXa da A)

__l . 1/p
=~ Jim,plos (EIR.(C.)'/7)

<T(Piyx R)+Ip-(X;X')—R+0()  (194)
- PXX/Iilgi(rll:PXv F(PXX/7R)
IP(X;X’)SZR,d(PXX/)>A
T Ip(X; X)) —R} +0(e) (195)

for any ¢ > 0. By taking ¢ — 0, we obtain (120). This
concludes the proof of Proposition 2. [ |

V. CONCENTRATION PROPERTIES

In this section, we study the concentration properties of the
RGV ensemble with GLD. In particular, we study the lower
tail P[— L log P.(C,) < Ey| and derive both upper and lower
bounds. We show that both bounds exhibit an exponential
decay. We also derive upper and lower bounds to the upper
tail P[ — Llog P.(C,) > Ey|. We show that the upper tail
exhibits a doubly-exponential behavior.

A. Lower Tail

In this section, we derive exponential upper and lower
bounds to the lower tail probability. Before proceeding,
we define the following sets

E(R,Eo) £ {PXX' € Q(Qx) : d(PXX/) > A,

121
_— Ell:)
| - EY (RGV)
13K == = = B = = = = B — X X Sk B
E® (RGV)
0.8 |-
5
8
Z 06f
,‘—'§
5
£ 04
-
0.2
of e
| | | | | | | | | | | |
0 01 02 03 04 05 06 07 08 09 1 L1 12
Ey
Fig. 2. Lower tail exponents for constant composition and RGV codes for

the Z-channel.

2R — Ip(X; X')]4 > I(Pxx/, R) + R — Ep},
(196)
M(R, Ey) = {Pxx' € Q(Qx) : d(Pxx/) > A,
2R —Ip(X; X')]y > A(Pxx/,R) + R — Eo}
197)

where

A(PXX/,R) = Prr|1in {D(Py‘xHW‘QX) + IP(X/,Y‘X)
Y|X X/

+B(R, Py) — g(Pxy) }, (198)
{9(Pgy) + [R—Ip(X; V)], )

(199)

max

R, Py) =
B(R, Py) P EX oy

We have the following result.

Theorem 2: Consider the ensemble of RGV codes C,, of
rate R and composition ) x satisfying condition (28). Then,
it holds that

1 .
]P’{— - log P.(C,,) < EO] <exp{ —nE"(R, Ey)}, (200)

]P[— %log P.(C,) < Eo] > exp { —nE(R, Eo)}. (201)

where
E'®(R,Ey) & i Ip(X;X')—2R],, (202
it (R, Eo) PXX/Ienﬁn(lR,Eo)[ p( ) J+,  (202)
ElP(R, Ey) £ min  [Ip(X;X’) —2R], (203)

Px x1€M(R,Eo)

respectively.

Before proceeding with the proof, we discuss an example
in Figure 2 where the lower tail bounds are shown for the
Z-channel with crossover probability w = 0.001 and R = 0.2.
In particular, we show the lower tail upper and lower bounds
on the tail exponent for constant composition and for the RGV
ensemble with d(Pxx/) = —Ip(X;X’) and A = —R. The
numerical results show that E\> = EIP for the both constant
composition and RGV ensembles. This can be explained by
the fact that there is only one empirical channel Px/y for
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each output type Py for this case [20, p. 5046]. Hence,
[max{g(Pxy), a(R. Py)} — g(Pxvy)] = [R — I(9)]+ =
B(R, Py) — g(Px/y), which leads to A = T' for any R
and crossover probability. Fig. 2 illustrates that the lower tail
for the RGV code ensemble decays faster than that for the
constant composition ensemble. This can be explained by the
the fact that at R = 0.2 the typical error exponent of the RGV
ensemble is higher than that for constant composition (see
Figure 1).
1) Proof of the Lower Tail Upper Bound: Let

B:(m,y) = {Cn : Zm(y) < exp{na(R — €,Py)}}, (204)

and

S

U (205)

m=1 y

Then, under the condition (28), by Lemma 14, we have
P{B.(m,y)}

§exp{—e"5[1— ¢

1—end

—n(e+6)

—e (1 + ne)} } (206)

Hence, by the union bound, we have

P{B. }
Z ZP{B m,y)} (207)
M —n(s+6)
ot I W=
m=1 y
(208)
R e—?L(E+6)
en |y|” exp{ _ ena [1 _ m _ e—ns(l + 77,8):| }
(209)

where (208) follows from (206), which decays double-
exponentially fast.

Now, by using the same arguments as [15, Proof of
Theorem 1], we have

IF’[ 21 log Pe(Cp) < E(]:|
n

S P -Cn € BC M Z Z e_nF(me X /7R_5) >e—nE0:|

- m=1m'#m

+P{B.}

- M
. 1 —nT'(Px,,,x ,,R—¢) —nE,
SB|gp Y0 3 e s i)y

m=1m'#m

M1 M .
—nI'(P. ,R—e
—_PpP i Z Z e (Px . x )

- m=1m'#m

(210)

X T{d( Xy, X ) > A} > e_"EO} (212)

:p{ 3

x):d(Px x1)>A

N(Pxx)
Py x1€Q(Q

x exp { —nI'(Pxx/,R—¢)} > e”(R_E”)] (213)

= max
Py x1€Q(Qx):d(Px x1)>A

exp{n(F(PXX/, R — 5) + R — Eo)}:|

P [N(PXX/ ) >

(214)

where (210) follows from [15, Eq. (60)], and (212) follows
from the fact that all codes C,, in the RGV ensemble satisty
d(Tpm, Tm) > A for all m #m'.
Now, define
S.(R, Eo) 2 {PXX' € Q(Qx) : 2R — Ip(X; X')]+
ZF(PXX,,R—e)JrR—EO}. (215)

Then, from (214) and Lemma 10, under the condition 28,
we obtain

—nELP(R,Ep,e)
b

P[ Liog Ru(Ca) < Eo] e 216)
n

where
Eﬁb(Ra E07 6)

. {[IP(X; X') = 2R], Pxx: € S.(R, Ey)
min

Py xr:d(Px x1)>A | 400, otherwise
217)
= min [Ip(X; X') —2R], (218)

Py x1€S:(R,Ep):d(Px x1)>A

with the convention that the minimum over an empty set is
defined as infinity. Since € can take any positive value, from
(216) and (218), we obtain (201). This concludes our proof of
the upper bound in Theorem 2.

2) Proof of the Lower Tail Lower Bound: The proof follows
similar arguments as [15, Section B]. For the RGV ensemble,
however, existing techniques to lower bound on the probability
of the lower tail for the constant composition codes cannot be
applied. For example, due to the dependence among code-
words, key proposition [15, Prep. 4] can no longer be applied.
We develop new techniques to deal with the dependence
among codewords.

For a given (m,m’) € [M]2, and y € Y™, define

Zmm (Y) = Z exp {ng(Px,, 4)}. (219)
me{1,2,--- ,M}I\{m,m’}
Let 0 > 0 and define the set
Bn(J, ma m/> y)

= {Cut Zunw () = exp{n(B(R, B,) + 0)}}, (220)

and its complement G,(o,m,m’,y) = BE(o,m,m' y),

where B(R, Py) is defined in (199). Let

M
= U U Uén(gam’ml7y)a

m=1m/#m y

221)

and

Gn(o) = B%(0). (222)
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Let € > 0 and define
A(Pxx/,R,e) = min {D(Pyx|W|Qx) + Ip(X';Y|X)
Y|X X/

+ [maX{g(PXY)vﬁ(Ra PY) + E} — g(PX/y)]+},

(223)
Then, we have
Pl - Lo RC) < B
> IP{C € Gnle) 1 i o~ APx | X RS
o SEEC DI
> 6"E“] (224)
zPﬁfeé(dlﬁé T AR )
! ! 7 M m=1 m/!#m
A(Xm, X 1)>A
> 6_"E°] : (225)

where (224) follows from [15, Eq. (83)], and (225) follows
from the fact that d(x,,, @) > A for any RGV code.
On the other hand, we also have

A(Pxx/,R,e) = A(Pxx/,R) +¢. (226)
Hence, from (225) and (226), we obtain
1 . R
P~ LhogR(C) < Bo] 2 PG, ()NG). 20
where
{ Z Z oM APx X Rec)
m=1
d(xm xm,)>A
> e”<RE°>}. (228)
It then follows that
1
IF’{ —log P.(Cp) < EO]
n
> P[Gn(c) N Go] (229)
= P[Go] — [go NB,(e)] (230)
Z > ) P[Bu(e,m,m,y) N Go. (231)
m=1m'#m y
Now, observe that
P[Go]
=P Z N(PXX,)G*"(A(PXXMR)JFE)
Py v/ €Q(Qx):
d(Py x1)>A
> e"(R_EO)} (232)

>

Py x1€2(Qx):
APy x1)>A

}P’[N(PXX,) > en(M(Px xr, R)+R—Eote) |

(233)

Define the set SL(R, Ey) = {Pxx’ :
A(PXX/,R) + R - EO + E}.
Then, under condition (28), by Proposition 10, it holds that

P[Go] = exp{—nE} (R, Eo,e)}, (234)

2R — [p(X: X))} =

where
Ellé) (R7 E07 6)
. {[IP(X;X’) ~2R]. Pxx € S\(R. Eo)

T soiag (oo Pxx ¢ S'(R, Eo)
(235)
= min [Ip(X;X') — 2R],. (236)

Py x1€{Px x1€2(Qx):
d(PXX,)>A}m$g(R,E0)

Now, we study the second term in (231). For any joint type
Pxy € Pp(X x ), define

>

me[M]\{rm,m}

Ny(Pxy) = 1{( X, y) € T(Pxy)}. (237)

Then, we have

P [Bn(av ﬁl, ﬁl, y) N go}

>, e

_ ]p[
mE[M]\{ri i}

>

(Px ) > MBRPy)+e)

o (A(Poy, @y R)+e) Zen(REo)} (238)

m=1m/#m
< HD{ Z n9(Pxu) > on(B(R.Py )+s)} (239)
E[M\{m, "
< ]P’{ Z N. (pXY)eng(ny) > en(B(R,Py)+5)]
Pxy:Px=
(240)
< P|N,(Pxy) > enw(R-Py)—g(ny)Jrs)}
nyZPXzQX =
(241)
= Z P|Ny(Pxy) > 6”([R_1P(X;Y”++E)}
Pxvy:Px=Qx L
(242)

- Z P

Pxy:Px=Qx
> en([R—Ip<X;Y>]++s>]

D R D
ny:PXZQx,Ip(X;Y)>O ’ﬁ’LE[M]\{m,m}

1{(X ) € T(Pyy)} = el 1P<XY>1++6>]

>

-me[M]\{rm,m}

1{(Xm,y) € T(Pxy)}

(243)

(244)
where (242) follows from (199), and (244) follows from

P{Zn{

me[M]\{m,m}

6 T(ny)}
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> e ([B=Ip(X5Y)]14e) | — (245)
if Ip(X;Y) = 0.
Now, in order to bound ]P’[Zﬁle[M]\{m)ﬁ,} {(Xm y) €

T(PXy)} > e”([R*IP(X?Y)]Jr*E)] for each joint type Pxy
such that Px = @ x, we will use the following lemma.
Lemma 15: [31, Lemma 1.8] Suppose that
X1, Xo, -+, X, are random variables such that 0 < X; <1,
for i = 1,2,---,n. Set p = 13 E[X;] and fix a real
number ¢ such that np 4+ 1 < t < n. If g¢g > 0 is such that
t—1=mnp(l+¢ep), then
P[in > t] < 2 e nP@+e0)lp), (246)

i=1

More specifically, for any m € [M]\ {7, }, observe that

E[1{(Xn,y) € T(Pxy)}]

=P[(Xm,y) € T(Pxy)] (247)
= > P(z) (248)
zn €T (Qx):(zm,y)€T (Pxy)
1
= (249
T
meT(Qx):(wm,y)eT(PxY)| (QX)‘
= e oY), (250)

where (249) follows from 3, and (250) follows from [28].
It follows from (250) that

1
PE > E[{(Xmy) € T(Pxy)}]
me[M]\{m,m}
(251)
= mnlp(XsY) (252)

Now, there exists a d(¢) < e such that min{Ip(X;Y) :
Ip(X;Y) > 0} > (). Then, we have

D

Pxy:Px=Qx,Ip(X;Y)>0
p[ S {x
me[M]\{rm,m}

> en([R—1p<X;Y>}++s>]

>

Pxy:Px=Qx,Ip(X;Y)>0
Py
me[M]\{m,m}

< 6n<[RIP<X;Y>1++5<s>>] ,

6 T(ny)}

)€ T(Pxy)}

(253)

By applying Lemma 15 for the sequence of Bernoulli
random variables {{(X,y) € T(PXY)}me[M]\{m.m} with
t = e”([R_IP(X§Y)]++6(5))’ we Obtain /

p[z

me[M]\{m,m}

]l{(XﬁL,y) S T(ny)}

> en([R—IP(X;Y)ma(a))}

< exp{ o MD(en([nffp(x;y)]wzzw(s))”efnzp(x;y))}
(254)

_ en([R—IP(X;Y)]++5(E))} (255)

< exp{
for any joint type Pxy € P,(X x ) such that Px = Qx,
where (255) follows from the fact that D(al|b) > a(log % —
1) [29].

It follows from that

P[Bn(ga ’ﬁ’l, ’ﬁl, y) N gO]

< maxexp{ — e"([R_IP(X;Y)]++6(E))} (256)
Pxy
< exp{—em@} (257)

From (231), (234), and (257), we finally obtain

1
P|——log Pe(Cu) < EO]

> exp { — nE (R, Eg,¢)} — Z Z Zexp{ "}

m=1lm'#m y

(258)
=exp{ —nE (R, Eo,e)} — ®" Y|  exp { — 6”6(5)}
(259)
= exp{ —nE}(E,Ey,¢)}. (260)
Due to the arbitrariness of ¢ > 0, it follows that
1 .
P| — —log Pe(Cn) < Eo| > exp{—nE(R, E)}, (261)
n

which proves the lower bound of Theorem 2.

B. Upper Tail

In this section, we derive double-exponential upper and
lower bounds to the upper tail probability. First, we intro-
duce some new notation which will be used throughout this
section. Recall the definitions of A; and A5 in (65) and (66),
respectively. Let

V(R, Ey) = {Pxx’ € Q(Qx) : d(Pxx’) > A,
Ip(X; X') < 2R, A(Pxx, R) + Ip(X; X') — R < By},
(262)
U(REy) = {Pxx' € Q(Qx) : d(Pxx/) > A,
Ip(X;X') <2R,T(Pxx:, R) + Ip(X; X') = R < Ep}.
(263)

and

As = {Pxx € Q(Qx):
['(Pxx/,R—¢)+Ip(X;X') —

d(PXX/) > A,IP(X;X/) < 2R,
R>Ey+e}.  (264)

Theorem 3: Consider the RGV ensemble C,, of rate R and
composition () x satisfying condition (28). Assume that the
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conditions in Lemma 11 hold for D = V(R, Eq, o). Then, the
upper tail can be bounded as
1 .
P| — —log P.(Cn) > Eg| < exp { — exp {nE;’P(R, EO)}}
n
(265)
where

E&‘F(Ra EO) =

max

min {2R — Ip(X; X'),
Px x1€V(R,Ep)

Ey— A(Pxx/,R) —Ip(X;X')+ R,R}.  (266)
In addition, under the conditions
max Ip(X;X')< min Ip(X;X') (267)
X X/ cAs x x/ €EA2
min Ip(X; X" > max Ip(X; X7,
PXX’:d(PXX’)SA PXX’:d(PXX’)>A
(268)

we have that

Pl -~ log Pu(C) > Fy| & exp{ —exp {nE(R, Fy)})
(269)

for all By < Eex(R,Qx), where

Eg (R, Eo) = {2R—Ip(X; X")}.  (270)

max
Py x1€U(R,Ey)

In Figure 3 we show the double-exponential bounds for the
upper tail for constant composition and the RGV ensemble
with d(Pxx/) = —Ip(X;X’) and A = —R for R = 0.2.
We observe that for constant composition the decay is indeed
double-exponential even if the bounds only coincide for high
values of Ey (above the TRC exponent). Instead, for the RGV
ensemble, the bound E' (R, Ey) = 0 for values of Ey of
interest. This implies that the decay of the upper tail for
Egs. < Ey < Eg is sub-double-exponential; for £y > Eey the
behavior of the upper tail is double-exponential as suggested
by EU for the RGV ensemble. Figure. 3 also shows that
the decay rate of RGV code is slower than the constant
composition code. This can be explained by the the fact that
the error probability in RGV code is expected to be smaller
than the constant composition codes since the later is more
structured as in the Fig. 2.

1) Proof of the Upper Tail Upper Bound: The proof is based
on [15, Proof of Theorem 2] with important changes to account
for the dependency among codewords in the RGV codebook
ensemble. See also the proofs of Lemma 11 and Lemma 16
below for specific changes.

Lemma 16: For every ¢ > 0, under condition (28) the
following holds

P{B,(0)} < exp{—e"}

where B,,(c) has been defined in (221).
Proof: See Appendix L. ]
We start by defining the following set

271)

]}(R, E(),CT)
£ {Pxx € Q(Qx) : d(Pxx') > A, Ip(X; X') < 2R,

0.2 +
0.18 - N
0.16 |- Bl
0.14 - =
£
£ 012 =
=}
j=n
5
2 olf i
s
2 008t .
o
=)
0.06 - Bl
—~E)
0.04 —— b al
-e-Flb
0.02 © E".L RGV) | |
Eiw (RGV)
— 0, — & Il Il Il
0.4 05 Ei, 06 E& 07 0.8 0.9 1
E(]
Fig. 3. Upper tail exponents for constant composition and RGV codes for

the Z-channel.

A(Pxx/,R,0) +Ip(X;X')— R< Ey— ¢} (272)

for o > 0, > 0, where A(PXX/, R, ¢) was defined in (223).
Under condition (28), we have that

E[N(Pxx/)]

Bl Y @ Xa)eTeo] e
(m,m’)e[M]?

= Y P[(Xm. Xm)€T(Pxx)] (274)
(m,m/)e[M]2

= Z Z P(Zm, Tt ) (275)
(m,m")E[M]2 @, @, €T (Px x/)

- en(2R—Ip(X;X’))’ (276)

where (276) follows from Lemma 2.

For a given message pair m, m’ € [M]?, and y € Y, recall
the definitions of Z,,, ,n/ (y), B, (0), and G, (o) in (219), (221),
and (222), respectively. Then, we have

A 1
P[C, € Gn(0), - log P.(Cp,) > EO} 277
1 M
<Pleebol gy X Y S Wi,
m=1m/#m vy
ng(me,y)
% i & _ < e—nE0:|
end(Pxmy) 4 "9 PXrv) 4 7,0 (y)
(278)
. 1 U
:P{Cnegn(a),M 3 > >
m=1m'#m:d(X ,,,X /) >0 Y
eng(ﬁxmly)
Wyl X )~ : <o)
end(Pxmy) 4 eng(me,y) + Zmm (y)
(279)

< min

P[N(PXX/) < e"(]\(PXX’vRAT)-‘rR—EU)]
Py x1 E]}(R,Eo,a) -

(280)
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é II}iIl P N(PXX/) < €n(2R—IP(X;X/)—£)
Px x1€V(R,Eo,0)
(281)
é min exp { — min (en(237[p (X;X/))’ enR)}

Dxx’ GV(R,EO,J)
(282)

where (278) follows from (11), (279) follows from the fact that
d(X m, X ) > A with probability 1 by the RGV random
codebook generation, (280) follows the same arguments to
achieve [15, Eq. (146)], (281) follows from (272), and (282)
follows from (276) and Lemma 11.

It follows from (282) that for ¢ > 0,

N 1
P|Co € Gulo). ~ - log P(C) > Eo}

< exp{ —exp {nEi(R, Eo,0)}}, (283)
where
Ey(R,Ey,0) = max min{2R — Ip(X; X’), R}.
PXX/GV(R,E(),U)
(284)
Therefore, we have
P| - LiogP(C) > By
n
_ A ) i}
=P|C, € gn(o')7 75 logPe(Cn) > Ey
L A . I
+P|Cy € G(0),—— log Po(Ca) = Eo (285)
- B . 1 - -
=P Cn S gn(a)7 _ﬁ logPe(C’rL) Z EO
L A , i )
+P|C, € B,(0), - log P.(C,,) > Ey (286)
- B R 1 - -
<P|C, € gn(a),—ﬁlogPe(Cn) > Fy
+P[C, € B, (0)] (287)

< exp { — exp {nEl (R, Eo, U)}} +exp{—e"?} (288)

where (286) follows from B,,(c) = G¢ (o), (288) follows from
Lemma 16 and (283).

Finally, by using the same arguments as to obtain [15,
Eq. (175)] from [15, Eq. (153)], from (288), we obtain

1 o u
P{— - log Pe(Cn) = Eo] < exp{ - e”E\JE(R*E(l)}’

(289)

which concludes our proof of the upper bound on the upper
tail.
2) Proof of the Upper Tail Lower Bound: Let

B.(m,y) = {Cn : Zm(y) < exp{na(R — E,Py)}}, (290)

and
M

U UB:(m,y).

m=1 y

[I>

B (291)

Then, under condition (28), by Lemma 14 and the union
bound, we have

P{B:}
S enRD}|n exp{ — ent |:1 _

e—n(s+6)
W — 6_"5(1 + nE):| }
(292)

Now, define G.(m,y) = BS(m

Recall the definition of Z,,(

y) and G, = BE.
) in (98). We have that

P|:_ lIOgPe(Cn) > E0:|
n

—P|3 S Y YWk

m=1m'#m Yy

exp{ng(Px,,y)} < 6nEo] (293)

exp{ng(f—:’xmy)} + Zm(y) B

—F|3; Sy Swwxa

m=1m'#m:d(X yn, X,/ )>A Y

exp{ng(Px_,y)} < 6nEn] (294)

eXP{nQ(pme)} +Zn(y)
M
1
Py Y Sweix)
m=1m'#m:d(X m,X /) >0 Y
exp{ng(Px,y)}
exp{ng(Pme)} + Zn(y)

< ean[J’Cn S gs:|

(295)
. 1
25 2
m=1 m’;ém:d(me,xm,)>A
exp { - nF(PXm,XmMR - 5)} < einEOacn € ga:l 5
(296)

where (294) follows from the fact that min;»; d(x;, ;) > A
for all RGV code (x1, a2, - , &), and (296) follows from
the same arguments to obtain [15, Eq. (178)].

Now, define

1 M
2] =
ax{y> X
m=1 m’#m:d(meyxm,)>A
oxp { —nl(Px, x,. R—e)} <e " } (297)
Then, we have
1 M
S5 EDY
m=1 iy tmed(Px,,, x, ) >A

eXp{ - nF(PXm.,XmMR - 5)} < einEovcn S g€:|

=P [Cn € &,C, € gs} (298)
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M
= P[ N ﬂgg<m,y>|so} (€o) (299)
m=1
’ M
= <1 — }P’[ U Ugg(m,y)’é'o]>]?[80] (300)
m=1
M ’
> (1 -y ZP[Q;(m,yﬂso})P[«fo} (301)
m=1
My
=Pl&] - > > P[B(rin,y) N&] (302)
m=1 y
Now, observe that
M
P[&o] = IP’[M > >
m=1 m’#m:d(ﬁxm,xm,)>A
exp { - nF(PXm,Xm, ,R— 6)} < enE"} (303)
= ]P’[ N {N(PXX/)
Py x1€Q(Qx):d(Px x/)>A
S en(F(PXX/,R7€)+R7Eo) }:l , (304)

where (304) follows by using the same arguments to achieve
[15, Eq. (187)].
Recall the definition of Fy in (67) in Lemma 12, i.e.,
Fo = ﬂ {N(PXX/):O}.

Py x/ cA1UAS

(305)

Define
F(Pxx:) = {N (Pxxr) < e"<F(Pxx~R—f>+R—EO>}. (306)
Then, from (304) and (306), we obtain

P[£o] °IP[ N f(PXXo] (307)
Py x€Q(Qx):d(Px x1)>A
=P N F (PXX/)] (308)
- Py x1 €A1UAUA3
=P| () F(Pxx)n ) ]-“(PXX,)]
- Py x/€A3 Py x1€A1UAS
(309)
>P| ) f(PXX/)ﬁfo] (310)
- Py x/1€A3
=P| ) ]—"(PXX/)]-"O]P[}"O] (311)
- Py x/1€A3
=<1—P{ U F(rxx) lf0> (Fol  (312)
Py x1€A3
>PlF)— > PF(Pxx)|Fo|PlF]  (313)
Py x1€As
> P[Fo] — Z P[F°(Pxx:) N Fo] (314)
Py x1€A3
>PFo]— Y. PF(Pxx/)], (315)
Py x1€A3

where (310) follows from the fact that for each joint type
Pxx: € Ay U Ay, it holds that {N(Qxx/) = 0} C
{N(QXX’) < en(F(PXX,,Rfs)JerEg)}_

Equation (315) resembles [15, Eq. (205)] with subtle dif-
ferences in the definition of sets A;, A5 and Asz. However,
since all the codewords in RGV are dependent, [15, Eq. (218)]
does not hold. We proceed with different arguments. For any
Pxx € A3, we have

P[}-C(PXX’)} = P{N(PXX’) > en(F(PXX/,Rg)+REO):|
(316)
< }P’[N(PXX,) > ensen(2RIp(X;X’)):|7
(317)

where (317) follows from the definition of the set Az, which
implies that

I'(Pxx/,R—¢)+ R—FEy>2R—Ip(X;X')+e. (318)
On the other hand, by Lemma 7, we have
Z P[N(PXX’) > e n(2R—Ip(X;X’ )):|
Py x1€A3
< max exp{ _ enR(2R71p(X;X’)+5)} (319)
Pxxr€A3
= exp { — en(BRmmaxpy  eas IP(X;X/HE)} (320)
< exp { - en(2R—mianX,€A2 11“()(;‘>(/)""‘5)}7 (321)

where (321) follows from the condition (267).
Now, under the condition (268), by Lemma 12, we have

P{Fy} > exp{ —e" maXPXXIEA’L’(zR*IP(X;X,))}.

(322)
From (315), (321), and (322), we obtain
oV MAXPy €Ay (2R—1P(X;X’))}

n(QR mlnPXX,eA2 IP(X?X/H_E)} (323)

exp

- eXp{
{ e WAXP e Ay (QR_IP(X;X,))}, (324)

To bound P[B. (7
As [15], let

,¥y)N&y], we use the following arguments.

N2 ;:{(m,m') cm#m ,m,m' €{1,2,--- || M/2] - 1}}
(325)

Define

S = {(mhwz,'“ T my/2)) ERT X R - xR":

|M/2] times

i,j€{1,2,: LM/QJ} i#£j

Since the distance between two codewords in a RGV ensemble
is at least A, we have

P[BE (ﬁl, y) N 50]
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<]

>

e—nF(PXm.Xm, \R—¢) S e”(R_EO):|
(m,m’)eN?

% P|: Z eng(lf’xm,y) < ena(Rfs,Py)
m/e{|M/2],-- ,M}\{m}

H 3 e—nr@xm,xm/,R—e)<en<R—Eo>}

(m,m’)eN?

ﬂ{(XlaX%"'aX[]Wj/Qj)GS}:|- (327)
Now, for any tuple (xi,22, - ,Ta7)) such that
minide{l’g?.“,L]v[/gj},i#j{d(il:i,wj)} > A, it holds that
P(XLM/2J+1 =T Mm/2)+1, X [ M/2)42 = T M/2]+2," " >
Xy =oy|X1=w1, -, X |p/2) = wU\l/2J)
_PXh =z, Xy =@y, , Xy = 2u) (328)
P(X | aj2) = X | py2), > X1 = 1)
1
(329)

P S
T (Qx)[MM/2)

where (329) follows from Lemma 4. Hence, by using the same
arguments as the proof of Lemma 14, we obtain

P[Bs(ma y) N EO]

ne ein(€+6) ne
§exp{e |:11_e_n§6 (1+n5)}}]P’(€0)
(330)
From (302), (324), and (330), we have
1
]P)|: - IOgPe(Cn) > EO:|
n
—n(e+6)
. e
2 <1 — enRD)|n exp{ — ena |:1 - m
—e " (1+ ns)] })
X exp{ - e"maxPXX’EA2(2R_IP(X;X,))} (331
= exp{ — e"maxpxx/6A2(2R—1P(X§X/))} (332)

which concludes the proof.

C. Convergence in Probability

This section enumerates properties of the tail exponents
derived in Sections V-A and V-B, respectively, and establishes
the convergence in probability to the TRC exponent of the
RGV. In particular, the following results can be obtained by
using the same arguments as the proofs of [15, Prop. 1], [15,
Prop. 3], [15, Prop. 2], respectively, and are therefore stated
without proof. Define

E(R) £ min {A(PXX/,R)
Py x1€Q(Qx)Ip(X;X")<2R,d(Px x1)>A
+Ip(X;X’)—R}. (333)

Proposition 3 (Lower Tail): E(R,Ey) and EP(R, Ep)
have the following properties

1) For fixed R, EXP(R, Ey) and EIP(R, Ey) are decreasing
in Eo.

2) E*(R,Ey) > 0
Egrg:(R7 QX> A? d)

3) EIP(R,Ep) > 0if By < E(R).
4) Eip(R, Ey) = oo for any Ey < Eg™(R), where

if and only if Ey <

Emin R 2 min (P /,R
0" (R) PXX,GQ(Qx):d(PXX,)>A{ (Pxxr, R)
— 2R~ Ip(X; X")]+ + R}. (334)

Proposition 4 (Upper Tail): ESP(R, Ey) and E% (R, Ep)
have the following properties
1) For fixed R, E'P(R, Ey) and E'® (R, Ey) are increasing
in Eo.
2) EW(R,Ey) > 0
Ef(R,Qx, A, d).

trc
3) E™(R,Ey) > 0 if Ey > E(R).
From Propositions 3 and 4, the following result states the
convergence in probability to the TRC of the RGV ensemble.
Corollary 3: For any RGV ensemble with GLD, under the
conditions in Lemma 11 and Lemma 12, we have that

if and only if E, >

1
——log Pu(en) - B (R, Qx,g.d,8). (339)
Recall that for d(Pxx/) = —Ip(X;X’) and A =
—(R + 20), the conditions in Lemma 11 and Lemma 12
hold. Hence, Corollary 3 holds for this important case
for which E'8Y(R,Qx,g,d,A) = ES(R,Qx,9,d,A) =

rce trc

E&(R, Qx).

VI. CONCLUSION

We have studied the RGV code ensemble and have studied
the typical error exponent and upper and lower error exponent
tails. We have shown that the lower tail decays exponentially
while the upper tail exhibits a decay that is between expo-
nential and double-exponential; it is sub-double-exponential
below the expurgated exponent and double-exponential above
the expurgated exponent. In addition, we have shown that the
error exponent of a sufficiently long RGV code concentrates
in probability around the typical error exponent; this is also
shown to coincide with the random coding exponent of the
RGYV ensemble, known to coincide with the maximum of the
expurgated and the random-coding exponent. This suggests
that every code in the ensemble asymptotically attains as high
an error exponent as it is known from random codes.

APPENDIX A
PROOF OF LEMMA 4

Assume that A = {iy,i2, - ,4} where 1 < i3 <
is < -+ < 4 < M for some [ € [M]. First,
if min; pep 2k d(xi;, @, ) < A, then by the RGV gener-
ation, we have

P(x;,, @iy, - ,x;,) = 0. (336)

Hence, (36) trivially holds.
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Now, under the condition min; ep j2x d(i;, i) > A,
we have

P{H{szmk}} =P(xi,, iy, -+, T4,) (337)

keA
= > P(xy )

;; iﬂ d(g,21)>AVE,IE[iy] k£l

i1—1 ig—1
L1 Tl 410

xIP’(a:“|a:“ 1)IP’(
x P(x
x P =Ly ) P(ay |25 ) (338)

- > P(zi )

gt g2l e (@ ,m) > AV, LE[i], k£l

1
if+1|m )P (x4, |2

il (@, 2 ) -

19— 1)

T N S
1
x P(x ZTJ&‘:B )P(z 22+1|w )
x P(aii =) | HIE” (s, |2y~ (339)

- > P

el TR et T d(@ @) > AVE L[] kAL
io—1 iz—1
XP(wifH‘f’% )P(x z§+1|5'3 )
!
il—l il—l 1
x Pyt e ) [ (340)

= 1 T@x 2y )]

On the other hand, under the condition 28, by Lemma 1,
we have

e T(Qx)|,Vi € [M]
(341)

IT(@x) > T(Qx, 2y 1) > (1 -

for all :c’i_l occurring with non-zero probability.
From (340) and (341), if min; rep) 5 d(mi],wik) > A,
we obtain

]P’{ X =$k}}

keA
< > P(ay ™)
a2l ,aji 11“ d(zy,m1)>AVE, €[] k#]
x P(@2 |y P(@ ) |ai?) - -
1
7;—1 i
CH e 1)(1_e—n6)l|']’( 1L (342)
< Z ]P)(:c’f 1)P( ﬁ-&@ )P(z ;;4-“33 )
wil 1)$;f+i7” :; 11+1
K P o) L (343)
n e T Qf
1
= (344)
(1= e m)NT(Qx)[
1
(345)

~ (= e HAIT(Qx)[AT

where (344) follows by summing over wét;l 1 for the k-th
conditional distribution, and (345) follows from |A| = 1.

In addition, for any M’ < M, from (340) and (341),
if ming jear):n d(xk, 1) > A, we also have

P{ M X :J’k}}

ke[M’)
> > P(ay ™ P(a; 2y P [21)
11 1z12 1o gt
L1+17 »T ip_q1+1
; 1
Cx Pl [ 346
X (w1171+1|w ) ‘T(QX)VM/ ( )
1
= —. (347)
T(Qx)M
This concludes our proof of Lemma 4.
APPENDIX B
PROOF OF LEMMA 5
First, we prove (42). Observe that

E[Z(i, )] = P[(X:, X;) € T(Pxx/)] (348)
= > P(xi, ;). (349)

(zi,2;)€ET (Px x1)

Now, let
o efnﬁ

Op = ——.

= (350)

Then, under the condition (28) and d(Pxx:) > A, by
Lemma 2, we have
(1 —462)
17 (Qx)[?

1
(1 —e )2 T(Qx)
(351
for all (x;,x;) € T(Pxx) since d(x;, z;) = d(Pxx’) > A.
From (349) and (351), we have

95, |7 (Pxx1)|

e 20 < P(x;, z;) <

—46%)e 7,7
(1 - agye 2 L] < wiz )
1 |7 (Pxx/)|
S 2 [T@Qx)P (332)

Recall the definition of L(Px x-) in (39). From (352), we have
(1 - 482)e 2 L(Pxx') < E[Z(i, j)]

1
< mL(PXX')-

Now, we prove (43). We consider three cases:
e Case 1: i =k, j # [. Observe that
E[Z(4, j)Z(i,1)]
=P[(Xi, X ;) € T(Pxx), (X, X1) € T(Pxx/)]

(354)
= X

(zi,2;,2)€ET3(Qx)
x I{{(xi,z;) € T(Pxx/)} N {(xi,®1) € T(Pxx)}}
(355)

(353)

P(x;, zj, x;)

c—1 — Y P@)Pe)Pa)

1 — e—1nd)3
( € ) (zs,2j,2)€T3(Qx)
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x 1{{(zi,z;) € T(Pxx/)} N {(xi, @) € T(Pxx)}}

(356)
1
=53 2 P
(1=e™)  Tan
XP[(wz, ) ET(PXX’)]P[(wi,Xl) ET(PXX’)]
(357)
1
U=y > P(@)L*(Pxx) (358)
2, €7 (Qx)
1
= Gl (Pxx), (359)

where (356) follows from Lemma 4 and Lemma 3.
e i # k,j = 1. The proof is similar to Case 1.
e i # k,j # [. Then, we have
B[Z(i,)Z(k,1)]
= ]P)[(XZ,XJ) S T<PXX’)7 (Xk7Xl) S T(PXX’H

(360)
= >

(xi,2),2,,2)ETHQx)
x I{{(zs, ;) € T(Pxx)} N {(xk, ®1) € T(Pxxr)}}

(361)
1
STewy X

(i,xj,2,,2)ET*(Qx)
x P(z;)P(zy)P(z1)
x 1{{(zi,z;) € T(Pxx/)} N {(z,x1) € T(Pxx')}}

P(wiv Zj, a'ik,:lil)

P(z;)

(362)
- ﬁp[(xi, X;) € T(Pxx)]

x P[(Xk, X1) € T(Pxx')] (363)
= ﬁLQ(PXX/), (364)

where (362) follows from Lemma 4 and Lemma 3.
From (359) and (364), for any pairs (i, j) € [M]? and (k,1) €
[M]? such that (i,5) # (k,1), we have

. 1
E[Z(i,j)Z(k,1)] < mLQ(PXX’)a (365)
and we obtain (41).
Finally, by [28], it is easy to see that
L(Pxx/) = e P(X5X7), (366)

Hence, we obtain (42) and (43) from (40) and (41),
respectively.
This concludes our proof of Lemma 5.

APPENDIX C
PROOF OF LEMMA 6

Observe that

E[N(Pxx/)] = [Z Z (X, X

m m'#m

)€ T(Pxx)}

(367)

>

(®m,®,, 1)ET(Py x/r):
d(®m,z,,/)>A

P(x,, acmf)}. (368)

=>> { P(@1m,, T )

m m/#m

)

(m 2, 1)ET(Py x1):
d(@m,z,, /1 )<A

On the other hand, by Lemma 2, under the condition (28),
it holds that

P2, &) = 0 (369)
if d(pm, Tm) < A, and
1-462 1
—age <P T, Tinr) <
Taopet =M ) S T Q)P
(370)

if d(p, Tm) > A
From (368), (369) and (370), for any joint type Px x+ such
that d(Pxx/) > A, we obtain

E[N (Pxx)]

Z Z Z Z ]P)(:Bm)wnﬂ) (371)
m m/#m (em.® 1)ET(Py x/):
d(mm,mm’,)>A
1-— 452
> e~ 20 372
S
m m/#m (@m.z,, €T (P
dCmmw, NSA
1—4682 20
= M(M —1) > T O (373)
(@m,@,,/)ET(Py x
d(PXX,)>A
= M(M —1)|T(P 49, e~ 20n 374
= MM =T (P e (374)

Z (n+ 1)—3|X|2(1 _ 4(5721)6_25 en(ZR IP(X;XI))’ (375)

where (375) follows from [28].
Then, as n sufficiently large, we have

P[E(Pxx1)]
=P[N(Pxx:) < (1 —462)e "

x exp{n[2R — Ip(X; X") —¢]}] (376)
<P[N(Pxx/) < e "/?E[N(Pxx)]] (377)
=P m —1< —(1—e/?) (378)
< Var(N(Pxx-)) (379)

(1 _ 6—116/2)2 (E[N(PXX/)])2 ’

where (377) follows from (375), and (379) follows from
Cauchy-Schwarz inequality.

Now, let
Z(m,m') 2 1{(Xm, Xmr) € T(Pxx')}, (380)
and
T (Pxx/
L(Pxx/) 2 'T((Q’if)@- (381)
Then, it holds that [28],
L(Pxx:) > (n41)731¥lg=nlp(XGXT), (382)
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Hence, as n sufficiently large, we have

M(M — 1)L(Pxx/)

> (n+ 1)—3\/1’\6”(23—%—11)()(;)(/)) (383)
> (n+ 1)*3\/\’\6”(5*%) (384)
> 6”5/2, (385)

where (385) follows from £ >> (logn)/v/n.
In addition, for any two fixed pairs (m,m’) and (m, ) in
[M]? such that (m,m’) # (1, M), by Lemma 5, we have

(1 —462)e 2" L(Pxx/) < E[Z(m,m)]

< mL(PXX/)a (386)
and
1
E[Z(m,m")Z(m,m)] < mL%PXX/). (387)
It follows that
Var(N (Pxx)) = E[N?(Pxx)] — (E[N(PXX’)])2 (388)

= > EZ(nm)T0m, i)~ (E[N(Pxx)” (389)

= Y E[Z(m,m')]
+ > E[Z(m,m)I(m,m)] - (B[N (Pxx)])
(/) (1717
(390)
1
< MM - l)mL(PXX/)
MO = DML =) ~ 1] s LA (P)
— (BIN(Pxx)])”. (391)
Now, let
V= M(M — 1)@1&])}(}0) + M(M — 1)
x [M(M —1) — 1]@?(}5@@), (392)

Vi = ((1—46%)e 2" M(M — 1)L(Pxx/))". (393)

Then, from (374), (379), and (391), as n sufficiently large,
we have

P[E(Pxx1)]
Var(N(Pxx'))

< . (394)
(1 — e—ne/2)2(E[N(Pxx/)])
1 v,
el o
1 e1on
< —ne/2)2 [ 2 2
(1 —emm/2)2 [ (1 - 462)" (1 — e=m9)
y 1 n eion _1
MM —1)L(Pxx/))  (1—402)2(1—e )
(396)

6—716/2

1 e4on
<
T (L—emne/2)2 [(1 —452) (1 — em9)?

645"

-1
]|
where (397) follows from (385).

+ (397)

APPENDIX D
PROOF OF LEMMA 7

It is clear that (48) holds if Ip(X;X’) = 0 since the LHS
of this inequality is equal to O for this case. Now, we consider
the case Ip(X; X’) > 0. Then, we can choose () such that
0 < §(e) << such that Ip(X;X’) > 6(e). With an abuse of
notation, we assume that d(g) = e.

Now, observe that

M
N(Pxx) =Y Y 1{(Xm Xm)€T(Pxx)}. (398)

m=1m'#m

By Lemma 5, we have

E[{(Xm, X ) € T(Pxx:)}] = e MPXXD 0 (399)
for all (m,m’) € [M]?2, which leads to
A 1
= ——— FE[N(Pxx 4
P M=) [N(Pxx1)] (400)
= g nIp(XiX)), (401)

By choosing ¢ = ¢"(2R~1P(X;X")+€) 4 1 then it is clear that
MM-1p<t—1<MM-1)—1  (402)
as n sufficiently large if Ip(X; X’) > 0 and choose ¢ such
that 0 < € <<. Then, by applying Lemma 15, we obtain
IP’[N(PXX/) > en(QRflp(X;X,)#*E)]
< exp{—M(M — 1)D(e—n(1p(x;x/)—s)||e—n1p(X;X'>)}.
(403)

Now, by using the fact that D(al|b) > a(log ¢ — 1) [29],
we have

D(efn(IP(X;X')fe) Hefnlp(X;X'))
> e nIr(XXD=8) (e 7). (404)

From (403) and (404), we obtain (48). Finally, (49) is a
straightforward consequence of (48). This concludes our proof
of Lemma 7.

APPENDIX E
PROOF OF LEMMA 8

Similar to the proof of Lemma 8, by applying Lemma 15
with ¢t = e"°, we finally have

P[N(Pxx:) > €]
é eXp{ — M(M — 1)D(67L(E—2R)||e_n]P(X;X/))}.

(405)
On the other hand, we have
D(en(e—QR) ||e—TLIP(X;X/))
> "2 (n(e — 2R+ Ip(X; X') — 1). (406)

From (405) and (406), we obtain (50) and (51).
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APPENDIX F
PROOF OF LEMMA 9

Observe that

M
E[N(Pxx)] =Y > E[Z(m,m')

m=1m'#m
n(2R—Ip(X;X"))

(407)

(408)

=e

where (408) follows from Lemma 5. An upper bound in (52)
simply follows from Markov’s inequality and (408).

To show the lower bound, we use Suen’s correlation
inequality [15, A]. However, the dependency graph is now
different from the one in [15, Proof of Lemma 6]. In this
new dependency graph, each vertex (i,7) is connected to all
other vertices or M (M — 1) — 1 vertices. Using the results of
Lemma 5, we have

>

1
@::5 Z

(@.9)€[M]Z (kD) E[M]Z, (k1) #(2.5)

1 _ !
< eQnReQnRe 2nlp(X;X")

E[Z(4,5)Z(k,1)] (409)

3 (410)
- 611(41%72[}:»(.X;.X/))7 (411)
and
= max E[Z(k,I 412
(i,5)€[M]3 22: o (kD) “12)
(k1) e[M]2,(k,1)#(i,5)
- e2nRe—n1P(X;X’) (413)
= n(2R-1p(XXD) (414)
In addition, we have
A =E[N(Pxx/)] (415)
From (411), (414), and (416), we obtain
A?
—>1 417
36 = b (417)
and
A
— = 1. 418
60 (418)
Now, by [15, Eq. (A.6)], we have
P[N(Pxx+) = 0]
A2 A A
< —min | —, —, — 41
_exp{ mm<8@’6§272>} 419)
. 1 o
< exp { — min <1, 1, 56”<23*1P<X’X >>) } (420)
= exp { - ;e”@RIP(X;X'))}, (421)

where (421) follows from the assumption Ip(X; X') > 2R.
From (421), by using the same arguments as [15, Proof of

Lemma 6], we obtain
P[N(Pxx/) > 1] > exp{n(2R — Ip(X; X"))}, (422

which is compatible with the upper bound, proving Lemma 9.

APPENDIX G
PROOF OF LEMMA 10

From Lemma 7 and the fact that 0 = e~ "°, it holds that
P[N(Pxx/) > e™] = exp(—noo) (423)

if s> [2R—Ip(X; X')]+.
Now, for s < [2R — Ip(X; X’)]+ and 2R < Ip(X;X'),
then s < 0. It follows that

PIN(Pxx:) > "] =P[N(Pxx/) > 1] (424)
=exp{n(2R—Ip(X;X"))} (425)
= exp{ —n[Ip(X; X') — 2R]; |,

(426)
where (425) follows from Lemma 9.
On the other hand, for s < [2R — Ip(X; X')]+ and 2R >
Ip(X; X'), then we have
P[N(Pxx/)>e™] <1 (427)
=exp{ —n[Ip(X;X') —2R],}.
(428)
In addition, for this case, there exists € > 0 such that
2e < min{2R—Ip(X;X’),[2R—Ip(X; X')]+ — s}. Hence,
by applying Lemma 6, we have

P[N(PXX/)
> (1—462)e 2 exp{n[2R — Ip(X; X') —¢]}] — 1.
(429)
Furthermore, as n sufficiently large, we also have
P[N(Pxx:) > €]
> IF’[N(PXX/) > en(2R—Ip(X;X’)—25)] (430)
> P[N(Pxx:) > (1 —462)e "
x exp{n[2R — Ip(X; X') — e]}] (431)
=1+ 0(1) (432)
= (1+4o0(1))exp{ —n[Ip(X;X') — 2R];} (433)
=exp{ —n[lp(X;X') —2R],}, (434)

where (432) follows from (429), and (433) follows from
[Ip(X;X')—2R]; =0 for 2R > Ip(X; X').
From (428) and (434), we obtain
PIN(Pxx/) > €] = exp{ —n[Ip(X; X') — 2R]; }
(435)
for s < 2R — Ip(X; X")]+ and 2R > Ip(X; X').
By combining (426) and (435), we have
P[N(Pxx:) > e™] =exp{ —n[lp(X; X') — 2R], }
(436)

for all s < 2R — Ip(X; X')]+.
Finally, from (423) and (436), we obtain

E(R, P, s)
JUp(X;X) = 2R, [2R—Ip(X;X')]+ > s
]+, 2R — Ip(X; X4 < s.

(437)

This concludes our proof of Lemma 10.
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APPENDIX H
PROOF OF LEMMA 11

First, we prove the following auxiliary lemma.
Lemma 17: For any = € [0, M ~1], the following holds:
1—(1—2)M < 2¢ Mo (438)

as M sufficiently large.

Proof: [Proof of Lemma 17] Let g(z) 21 — (1 — )M —
2¢—M= This function has positive first-order derivative, hence
g(z) is increasing. Hence, for any x € [0, M ~!], we have

g(x) < g(M™1) (439)
:1_<1_1>M—2 (440)

M e
1= s Moo (441)
<0, ‘ (442)

where (441) follows from (1+1)™" — 1/e as 2 — oco. This
concludes our proof of Lemma 17. ]
Now, we return to prove Lemma H. Observe that

N(Pxx) =Y Y 1{(Xm Xp) €T (Pxx:)}. (443)

m=1m'#m

It follows that

E[N(Pxx/)] = Z

m=1m'#m

P{(X 1, Xm') € T(Pxx')}

(444)
- en(QRflp(X;X/))’ (445)
where (445) follows from Lemma 5. Then, we have
P{N(PXX/) S enEE[N(PXX/)]}
_ M
< ]P{ Z Z ]l{(Xm,Xm/) € T(PXX/)}
m=1m'#m

< RPN =) } (446)

We consider two cases:
e The condition (55) holds.
On the space X" x X" --. x X" define a probability measure

M terms
P such that

M
Pu(@y, 2, 2y) = [ P[Xm = @] (447)

m=1
forall (xy,xo, - ,xp) € X™ X X™ - x X", Then, for this

M terms
case, for any Pxx/ € D, we have

M
P{ S>> (X, X)) € T(Pxx1)}

m=1m'#m

< en(QR—Ip (X;X")—¢) }

- ¥

T1,T2, M

M
X 1{ S 1{@m ) € T(Pxx)}

m=1m'#m

]P)(wlvx27"' axM)

< e”<2P°—fP<X;X')—E>} (448)
<; Z Pr(xy,x x)
> (1—6777’6)]‘/[ 1T 1,42, s LM
L1,L2, " , LM
M
x 1{ S S (@ wm) € T(Pxxr))
m=1m'#m
< en(QR—Ip(X;X’)—e)} (449)

e_enR log(l_e—né)

M
Xpn{ SN 1{(Xo Xon) € T(Pxx)}

m=1m'#m

< en<2Rzp<x;x'>e>} (450)
é efe"R log(1—e™"%)
X exp{ — min (e"(QR_IP(X;X/)), e"R) }, (451)

where (449) follows from Lemma 4, and (451) follows from
[15, Lemma 2].
From (446) and (451), we obtain
min P{N(PXX/) < enEE[N(PXX/)]}
Py xr€D
% e—e"R log(1—e™"%)

. vt
> exp{ _ min (en(ZR—mlanX,GD Ip(X;X )),enR)}

(452)
& e Mlog(l—e™™) exp { — en(R—Zé)} (453)
= exp { — e”(R725)}, (454)

where (453) follows from minp_,ep Ip(X;X') < R+ 26

for this case, and (454) follows from —log(1 —e~") ~ e,
o Case 2: The condition (56) holds.

For this case, observe that

P{N(Prx) > BN (Prc)] |

M
>p{{ S S (X, X o) € T(Pxxr)}

m=1m'#m
> en(QRflp(X;X')fs) }

min

8
(m,m")€[M]3

- ¥

L1,L2," LM

{35 @) TP}

m=1m'#m

AX s X ) > A}} (455)

P($17w27"' 7wM)
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> en(2R—Ip(X;X/)—E) }

N { min = d(Ty,, Tm) > A}}
(m,m’)e[M]?

S

T1,T2, "

(456)

PH(wthQ, e )mM)

yTM

]l{{ i Z L{(Tm,Tm') € T(Pxx)}

m=1m'#m

EingE[N(PXX/)} }

d(mrmxm’) > A}} (457)

N { min
(m,m’)e[M]3

M
:]P’H{{ SN 1{(Xm. X)) € T(Pxx)}

m=1m'#m
BN (P
N { m Wrgg)in[M]E A( Xy X ) > A}}, (458)
where (457) follows from Lemma 4 with M’ = M and
Lemma 3.

From (458), we have

P{N(PXX,)

{{ Z Z (X, X)) € T(Pxx:)}

”EE[N(PXX/M}

(459)
M

- ]P’H{ DD (X X)) € T(Pxxr)}
m=1m'#m

S einEE[N(PXX/)] }

P in d(X,, X)) <AL 460
+ H{ (m,nrml’l)lél[l\i]f ( n m ) = } ( )

Now, observe that

{ min A( Xy X ) §A}
(m,m’)€[M]?

_ { TQ ”gm{d(xm,xm/) < A}}
{Uu U

m=lm'#m P, 1 €Q(Qx):d(Pxx1)<A

(461)

{(Xm7Xm’) ET(PXX’)}}' (462)

Therefore, we have

P i (X, X)) <A
H{ (m,mr,r/l)lél[kl]f ( ) }

Uy U

M
= PH{

m=1m'#m PXXIGQ(Q)() (PXX’)<A

(K X ) € T(PXX»}}

D>

Py 1 €0(Qx):d(Py 1) <A M=1

Hm{LJ«XWdeeﬂém»ﬁ. (464)

m’#m

(463)

Now, for any joint-type Px x: € Q(Qx) such that d(Px x+) <
A, we have

P{ U (0 Xow) € T(Prx}}

m'#m
E[PH{ U {(Xm,Xm/)GT(pXX/
m’#m

- 15[

M} e

N (X X0) ¢ TP )| X}

m’'#m
(466)
=1- IEKIP’H{(Xm,Xm mod M+1)
¢ T(Pyx) mg ] (467)
1o (1- e_nzp(x;x’)>M) (468)

where (468) follows from the standard calculation (eg. [28]).
Now, from the condition (56), we have

~ min
Px x1€Q(Qx):d(Px x1)<A

R< T5(X;X') =26, (469)

which leads to

. !
—nming L co(@x)d(Py <o Ip(XXT)

<e = pt

470)
From (464) and (468), we obtain
P min Ad( X, X ) <A
H{ (m,m’)e[M]? ( ) }
‘M {1 (- o mEIA L oty apy g <a Ip (XX ))M:|
471)

o — 1 ~ ~ ~ . ’
< 2M exp{ _ Me " MiP xre@@Pyon<a Tp (XX )}

(472)
< exp { _ e”(R*mi“ﬁXX,eg@x):d(ﬁXX/)SA 15(X:X")) }

473)
< exp { — en(2R+257minﬁXX’eD Tp(X:X") } (474)

where (472) follows from Lemma 17 with (470), (474) follows
from the condition (56).
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On the other hand, by [15, Prep. 6], we have

PH{N(PXX/) < enEE[N(PXX/)]} 475)
= PH{N(PXX’) < e‘”Ee"@R—IP(X%X'”} (476)
< exp { — e"(QR_IP(X;X/))}. 477)

From (474) and (477), under the condition (56), we have

min P{N(PXX') < enE]E[N(PXX’)]}

Py x1€D

< exp { _ ¢M(2R-minpy  ep Ip(X:X") } (478)

Finally, we obtain by combining (454) for the case 1 and (478)
for the case 2.
This concludes our proof of Lemma H.

APPENDIX I
PROOF OF LEMMA 12

Define a new probability measure IT on X™ x X™--. x X™:

M times
M
Pu(@y, @, xy) = [[ PIXm = 2] (479)
m=1
for all (x1, @2, -, xn).
Observe that
P(Fo)
el Y NP = 0} (480)
Py x1€A1UA2
M
=Py D> X >
Py x1€A1UA; m=1m'#m
]l{(Xm,Xm/) ET(PXX/)} :0} (481)

m ﬂ m {<Xm7Xm')ET(PXX,)}C}

Py xr€A1UAsm=1m'#m
(482)

N N ) X Xw) € T(Pxx)}

Py x1€A1UA> m=1m'#m

N{d( X, X ) > A}}C} (483)

M
N N N A X)) ¢ T(Pxx)}

Py x1€A1UA; m=1m'#m
U{d( X, Xpr) < A}}

- ¥

L1,L2, " &M

« 11 Hﬂ{ﬂwm,wmowwxxn

Py x1€A1UA; m=1m'#m

(484)

P(.’El,$2,"' ,ZB]\{)

U{d(m, Tm) < A}} (485)

- ¥

L1,L2, LM

< I III

Py x1€A1UA; m=1m'#m
N{d(xm, Tm') > A}})
> )

L1,L2, " M

< I

Py x1€A1UA> m=1m'#m

X H{d(xpm, Tm ) > A}

>

T1,L2, LM

< I I

Py x1€A1UA; m=1m'#m

X L{ (T, Trr) ¢ T (Pxx )} {d(@, @) > A} (488)

=S

T1,L2, LM

P(m17w27"' 7',1:M)

(1 — ]l{{(a:m,:cm/) c T(PXX/)}

(486)

P(xy, @2, - , M)

(1 —1{(zm, zm) € T(PXX/)})

(487)

P(m17m27"' 7:BM)

Pr(x, 22, -+, TMm)

X HPXX’ EAlUAsz%:le/;ém
X (@, ®r) ¢ T(Pxx ) U{d(@m, Tr) > A} (489)

M
N N ) A Xo) & T(Pxx))
Py x1€A1UA; m=1m'#m
(X s Xr) > A}}
M
> 2 X
Py x1€A1UA; m=1m'#m

]l{{(Xm;Xm’) S T(PXX’)}

U{d( Xy Xor) < A}} :o},

— Py
(490)

:]P)H

(491)

where (483) follows from d(Pxx/) > A for all Pxx: €
A1 U Az and d(@p,, Ty ) = d(f’mnm,) (487) follows from
the fact that 1—1{{ (s, ') € T (Pxx/)}N{d(Tm, Tim) >
A}} = (1 — ]l{(:cm,a:mr) S T(PXX/)})]l{d(wm,iL'm/) >
A} if d(@p, @) > A and 1—1[{{(:1:m,xm/) € T(Pxx/)}IN
{d(xm, Tm) > A}} > 0 = (1 - ﬂ{(mm,azm/) €
T(PXX/)})ﬂ{d(:Bm,CCm/) > A} if d(:cm,mm/) < A, (489)
follows from [7, Lemma 4] and Lemma 4.

To apply Lemma (21), we form a dependency graph as
follows. Define the family of Bernoulli random variables

{Z(m,m', Pxx/)} Py v €A1 UAs,(m,m")e[M]2» Where
Z(m,m', Pxx)
£ ﬂ{(Xm,Xm/> S T(PXXI) @] {d(Xm,Xm/) < A}}
492)

Then, we have

En[Z(m,m’, Pxx)]
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=Pr{(Xm, Xm) € T(Pxx/) U{d(X ) X ) < A}}

(493)
< Pr{(Xm, Xmr) € T(Pxx)}HPr{d(X p, Xm) < A}
(494)
On the other hand, we have
]PH{d(Xm,Xm’) S A}
= Z Pri(@m, T ) I{d(Tm, ) < A} (495)
Lo, L,/
= Y B@a)B@a)t{d@n, ) <A} (@9)
= Z Z P(mnz)]}p(mm/)
Py x1€Q(Qx) (®m @,/ )ET (Px x7)
X {d(xpm, T ) < A} (497)
= 2 > o
PXX/EQ(QX) (wmvwm/)eT(PXX/)
X 1{d(pm, T ) < A} (498)
=2 Y me
PXX/EQ(QX) (wwmwml)eT(PXX/)
- max e P (G (500)
Py x1€Q(Qx):d(Pxx/)<A
= e_nmianX’EQ(Qx)‘d(PXX/)SA Tp(X:X') (501)
S efnmaxPXX,EQ(QX);d(pXX,)>A IP(X;X’)7 (502)

where (498) follows from 3, and (502) holds by the condition
(69) under (68).

It follows from (494) and (502) that

En[Z(m,m’, Pxx/)]

S ]P)H{(Xm; XTYL/) S T(PXX’)}

4o MMAXPy s €Q(QX )P x)>A Ip(X;X")

(503)
= o nIP(XGX) | o TmMAXpy  eQ(Qx) Py ) >A Ip(X;X7)

(504)
< emIP(X5X') 4 p—nlp(X;X7) (505)
Ll (X)), (506)

where (505) follows from the fact that d(Pxx-) > A for all
Pxx € A1 U As.
Now, we set

e?LIp(X;X/)}.

z(m,m',Pxx) %1 —exp{— (507)

Then, under the condition minp, ,ca,u4, Ip(X;X’) > R,
for all (m,m’, Pxx/) € [M]? x (A; U Ay), it holds that

EH [I(m, m', PXX/)} (508)
< emnlp (XX (509)
=1 —exp { — e"fP<X;X'>} (510)

= (1 — exp { - e”IP(X"X,)}>

|A1UA2‘€”R
X (exp { — e”IP(X;X')})

= x(m,m',PXX/)

(512)

where (510) follows from the fact that lim,_.g % =1, (511)
follows from |4; U As| < |Q(Qx)| which is sub-exponential
in n and minp,_ _, e4,04, Ip(X;X’) > R.

Then, by applying Lemma 21 with A =
[M]? x (A1 U A3) and B = (), under the condition

minp, , ca,04, Ip(X;X’) > R we have

M
m Y XY
Py x1€A1UA m=1m'#m

L{{(Xm, Xw) € T(Pxx1)}
UAd(X o, X)) < A}} = O}

| A1 UA | M (M—1)
> min exp{ — eP(XXT)
PXX/€A1U.A2

(513)
= eXp{ — " MAXPx x1EA1UAS (QR_IP(X;X,))} (514)
= exp { _ en maxp. ., €Ay (2R—IP(X;X’))}) (515)

where (515) follows from the definition of A; and As.

Finally, the condition minp,  , c4,u4, Ip(X;X’) > R is
the same as minp,,e4, Ip(X; X’) > R, which is equivalent
to the condition that

Fy < EgX(R, Qx, d, A)

£ min {F(PXX/,R)
Py x1€Q(Qx):d(Px x1)>A,Ip(X;X)<R

+Ip(X; X') —R} (516)

= E;iv(Rv Qng,d»A)a 517)

where (516) is obtained by using the same arguments to
achieve [15, 1. (30)]. This concludes our proof of Lemma 12.

APPENDIX J
CONCENTRATION INEQUALITIES FOR SUMS OF
BERNOULLI RANDOM VARIABLES

To obtain the TRC or develop concentration inequalities for
the random coding exponents, we need to develop concen-
tration inequalities for a sum of Bernoulli random variables.
Since in RGV codebooks, all the codewords are correlated,
standard concentration inequalities such as Suen’s correlation
inequality [15], [32] cannot be applied. The main reason
is that these standard inequality require a local dependency
in the sum of random variables which only holds for the
fixed-composition or i.i.d. random ensembles but not for RGV
ones. We develop concentration inequalities for a sum of n
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terms where each term depends on all the n — 1 other terms.
Thanks to the structure of all these random variables, some
concentration inequalities in the probability literature can be
applied. In this section, we list all these inequalities. For
the newly-developed inequality, the proof can be found in

appendices.
Lemma 18: [31, Lemma 2.1] Fix a positive number n and
let {z1,22,-- ,x,} be real numbers from the interval [0, 1].

For every A C [n], let (4 be defined as

Ca=]J= ] @—=). (518)
€A ie[n]\A
Then,
ZCA—Z >, =1 (519)
AC[n] Jj=0 A€0;[n]
and
Dwi=Y i >, Ca (520)
=1 Jj=0 A€d;[n]

where 0;[n] denotes the family consisting of all subsets of [n]

of cardinality j € {0,1,2,--- ,n}.

The following result can be also derived from Lemma 15.
Lemma 19: Suppose that X1, Xo,--- , X, are random vari-

ables such that X; € {0,1}, for i = 1,2,--- ,n. Set p =

L5 E[X;]. Then, for any v € [0,p), it holds that

P{in <n(p—v)— 1] <2 e Pl—vlp)  (521)
=1

Proof: Let X; 21— X, forall i € [n] and set § £ 1 —p.
Then, we have

(522)

3\>—‘

= LE

Lett—1=n(1l—p)+n(l—p)eg for some gy > 0 such that
(I —p)(1 +e9) < 1. Then, by applying Lemma 15 for the

Bernoulli sequence X1, X5, -, X,, we have

n
P[ZXZ- > t] <2 e*"D(ﬁ(H»so)Hﬁ)

=1

(523)

— 9~ nD((1—p)(1+e0)[1-p) (524)

From (524) and X; = 1 — X; for all i € [n], we obtain

IE”[ZXZ- <n-— t} < 2 ¢ PA-P)Ut0)lll=p)  (525)
i=1

Now, by setting g = v/(1—p), we have t = n(1—p+v)-+1.
Then, from (525), we have

P[in <n(p—v)— 1} < 9 e D(A=P)(1+<)1-)
i=1

(526)
— 9e—nD(1—p+v|1-p)

(527)
_ 26—71,D(p—’/“17)7 (528)

where (528) follows from D(a|b) = D(1 — a||1 — b). Final
note is that (1 —p)(1+¢e9) =1—p+v < 1forall v € [0,p).
|

Now, we recall the following result.

Lemma 20 [31, Theorem 1.2]: There exists a univer-
sal constant ¢ > 1 satisfying the following. Suppose
X1, X9, -+, X, are random variables such that 0 < X; <1,
for i = 1,2, --- ,n. Assume further that there exists constant

€ (0,1) such that for all A C [n] the following condition

holds true:
E { 11 Xz} <A
i€A

(529)

where |A| denotes the cardinality of A. Fix a real number v
from the interval (0 = 1) and set t = ny + nyv. Then,

P[Z X, > t} < ce-nDO+)). (530)
i=1
where D(y(1+v)||7) is the Kullback-Leibler distance between
v(1+v) and ~.

Now, to bound the probability in (491), we recall the fol-
lowing version of Suen’s correlation inequality lemma in [32].

Lemma 21 [32, Lemma 1]: Let {Uy }xexc, where K is a set
of multidimensional indexes, be a family of Bernoulli random
variables. Let G be a dependency graph for {Uj}rer, i-e.,
a graph with vertex set K such that if A and B are two disjoint
subsets of I, and G contains no edge between A and B,
then the families {Uy }xc4 and {Uy }rep are independent. Let
Sy 2 > kea Uk for any A C K. Moreover, we write k ~ [ if
(k,1) is an edge in the dependency graph G. Suppose further
that x, k € K are real numbers such that 0 < z; < 1 and

EU] <ap [[(1—a), kek. (531)
I~k
Then, for any two subsets A, B C IC, it holds that
P(Sa=0|Sp =0) > [J(1 - ). (532)
i€A
APPENDIX K

PROOF OF LEMMA 14

Fix an m € [M]. For any conditional type Px'y € Pp (X x
Y) such that Px = Qx and Py = P, define

Nm,y(PX’Y) £ |{Xm’ (X, y) € T(PX’Y)am/ # m}|

(533)
= > H{(Xm,y) €T(Poy)}. (534
m’#m
Observe that
E[1{(Xmy) € T(Pxv)}]
=P[(Xn,y) € T(Pxry)] (535)
= > PXp=xw) (536)
x €T (Pyxr)y)
= Z 1 (537)
17 (Qx)|

z,, €T (Px/y)
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e P (538)

where (537) follows from Lemma 3, and (538) follows

from [28]. Hence, Ny, o(Px+y) is a sum of M — 1 binary-

valued random variables, each has the expectation e~ /(X YY),
Now, from (98) and (534), we can express Z,,(y) as

Zm(y) = Z

PX"Y:PX’:QX

Ny (Pxry )e™Exy) - (539)

Hence, by considering the randomness of {X .}, we have

P[Zn(y) < exp {na(R — &, P)}]

< p[ Z Nm,y(PX’Y)Gng(PX'Y)
Pxr iy Pxr=Qx
< exp {na(R —¢, Py)} (540)
<P max Ny (Pxry )9 Pxrv)
_PX’\Y:PX':QX 7y( X Y)
< exp {na(R—E,Py)} (541)
) m {Nmyy(P)e”g(PX’Y)
" Pxrjy:Px1=Qx
< exp {na(R — ¢, Py)}}] (542)

{Nmy(PX/Y)

p[ N

Pxr 1y Pxr=Qx
< exp {na(R —¢, Py) — g(PX/y)}H . (543)

As mentioned above, N,, ,,(Pxy) is a sum of M —1 binary-
valued random variables, each has the expectation e~ /(X YY),
However, different from i.i.d. random codebook ensembles,
these random variables are correlated.

As [20, Appendix B], we argue that by the definition of
a(R — ¢, P,), there must exist some P%y such that for
Piry 2 Py x Py, Ipo(X';Y) < R—cand R — ¢ —
Ip+(X';Y) > a(R—¢, P,)—g(P%.y ). To see why this is true,
assume conversely, that for every Py [vs which define Px/y £
Py x Py jy, either Ip(X';Y) > R—cor Ip(X';Y) > R—¢
or R—Ip(X;Y) —¢ < a(R —¢,P,) — g(Pxry), which
means that for every Pxy,

R — & < max {IP(X’;Y),IP(X/;Y)
+a(R—e,Py) — g(Pxy)}
=Ip(X;Y) + [a(R — ¢, Py) —

(544)
g(Pxry)]y, (545)

which implies that for every Px|y, there exists ¢ € [0, 1] such
that

R—e< maX{Ip(X/;Y),Ip(X/;Y)
+a(R—¢, Py) - g9(Pxv)}
=Ip(X";Y) +t[a(R - ¢, Py)

(546)
—g(Pxry)], (547)
or equivalently,

a(R — E,ﬁy)

R—1Ip(XY)—¢

> PX’\YH}Da)'(}f—QX 0r<ntl<1 (PX/Y) + t
(548)
= max [g(PX/y) —Ip(X'; Y)} + R —¢ (549)

PX’\XY:PX’:QX'
Ip(X';Y)<R—¢

=a(R—¢, Py), (550)

which is a contradiction.
Now, from (543) and the existence of P%,, as above,
it holds that

P[Zn(y) < exp {na(R -, P,)}]

< P[Nypy(Pry) < exp {n[a(R — &, Py) — g(Pxry )]}

(551)

Different from [11], Ny(P%/,y ) is now not the sum of i.i.d.
Bernoulli random variables but these random variables are still
identically distributed and weakly dependent.

Now, let

'—]].{ m,y ETpxly}Vm er [ ]\{m},
(552)
and
p = P[(X2,y) € T(Pxy)]. (553)
Now, let v € (0,p) be chosen such that
(M —1)(p — v) = exp {n[a(R — &, By) — g(P¥y)]}-
(554)

The existence of v is guaranteed since (554) is equivalent to

o exp {n[a(R f]\; ijl) — 9(Pxy)l} (555)
> pe exp {n[R —AZ—_IlP*(X ;Y)]} (556)
B exp {n[R —e — Ip.(X;Y)]}

B exp(nR) — 1 437

=exp{ —nlp-(X;Y)}

—exp{ —n(Ip-(X';Y)+e)} >0,  (558)

so v € (0,p).
By applying Lemma 19 withn =M -1, X; = Z;,, p =

P[(X2,y) € T(P%y )], and v satisfying (554), we have

R—¢,Py)

P[Ny(P;g,y) < exp {nfof - g(P;*«y)]}}

= ]P’{ y(Pxry) <exp{nla(R —e, Py) - g(P)*('Y)]}]

(559)
< 2exp ( —(M-1)D(p — y||p)) (560)
= exp(—e"RD(p —vlp)). (561)

Now, since p = exp(—nlp-(X’;Y)), from (558), we also
have

(M =1)[(v = 1)(p - v)]
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B S —
(562)

e—n(6+5)
< 7= P [n(R—Ip- (X5 Y))]. (563)

On the other hand, we have
exp(-e""D(p — v]p) = exp { — "D o) |
(564)

where a £ R+g(P%y) —a(R—¢,Py) and b 2 Ip.(X;Y).

It is easy to see that

a—b=R+g(P%y) — a(R—¢e Py) — Ip-(X;Y) (565)
>e. (566)
Hence, by using the following fact [29, Sec. 6.3]:
D(allb) > alog% +b—a, (567)
we have
D(e™|[e™™) > e [1+ P~ ((b—a)n — 1)]. (568)

Hence, we obtain
eXp(—enRD(p _ V”p)) < exp{ _ e”(R—IP*(X';Y))
x[1—e ™1+ na)]} (569)

From (561), (563), and (569), we obtain
PN (Piey) < ex0 {ufalR — 6,2, ~ P )]}
B e—n(6+e)
S exp 71 _ efné

X exp{ — "B Ip (X)) 1] emne(] 4 ns)]} (570)

exp [n(R—Ip-(X';Y))] }

— exp { _ M R=Ipe (X5Y))

e—n(é—i—s) e
67n(6+5)
Sexp{— |:1—1_ems—€ n€(1+n6):|}, (572)

where (572) follows from the fact that Ip«(X’;Y) < R —e.
From (551) and (572), we obtain

Pr [Z,(y) < exp {na(R — ¢, Py)}]
< exp { [ _"::; e (14 ns)} }

(573)

This concludes our proof of Lemma 14.

APPENDIX L
PROOF OF LEMMA 16

The proof is based on [15, Proof of Prep. 5]. However,
there are some changes to account for the dependency among
the codewords. One such an important change is to replace
the Hoeffding’s inequality in [15, Proof of Prep. 5] by a
generalized version of this inequality in [33].

By using the union bound, we have

M ~
U U UBn(a,m,m’,y)} (574)

m=1m'#m y

M
<> N ZIP{BTL(U, m, m’7y)}. (575)
In addition, for any joint type Pxy € Pp(X x V), let

>

me[M]\{m,m’}

P{B,(0)} = IP’{

N(Pxy) 2 1{(X,y) € T(Pxy)}, (576)

then we also have
P{Bn(o—, m, mlv y)}

= Z P{N(PXY) > e”(ﬂ(R7PY)+a—g(ny))}

PxyiPx=Qx,
Ip(X;Y)<R

Ly

Pxy:Px=Qx,
Ip(X;Y)>R

P{N(PXy) 2 en(ﬂ(R7PY)+UQ(PXY))}

(577)
where (577) follows from [15, Eq. (H.6)].
Now, observe that
IP’{N(PXy) > en(ﬁ(RyPy)-&-o—g(ny))}
< P{N (Pxy) > e"(R“—fP(X;Y”} (578)
= IP{ > 1{(Xs,y) € T(Pxy)}
me[M]\{m,m’}
> en(R+aIP(X;Y))} (579)
where (578) follows from [15, Eq. (H.9)].
Define a new probability measure IT on X™ x X™--- x X™:
M times
M
Pu(ay, @, o) = [[ (X =2m),  (580)
m=1

for all (x1, @2, - ,xnr).
Note that for any A C [M
(28) we have

5| I x

]\ {m,m'}, under the condition

) € T(PXY)}]

1

= WEH{ [] H{(Xn.y) € T(Pxy)}| (58D)

meA
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e | S C R ()
meA

(582)

where (581) follows from the change of measure and
Lemma 4.
Now, we have

P{(Xm,y) € T(Pxvy)}

= > P@n) (583)
jmeT(PXY‘y)
1
= > = (584)
ST (Prvly) 17 (Qx)
= ¢ MP(X3Y) (585)

where (584) follows from Lemma 3, and (585) follows
from [28].
From (582) and (585), we obtain

E{ II H(Xm y) € T(Pxy)}| <A (586)
meA
where
v = (1 o e—n(S)—le—nIp(X;Y)' (587)
Hence, if R > Ip(X;Y), we have
P{ Z {(Xm,y) € T(Pxy)}
me[M]\{m,m’}
2 en(R-’rO’—]p(X;Y))}
é exp{ _ 6nR‘D <(1 N efné)fleaflp(X;Y)
(1 o ené)lenIP(X;Y)> } (588)
< GXp{ o enR(l o 67n6)7167n(IP(X;Y)70)
efn(Ip(X;Y)fa)

= exp{ — (1 — e LB Lp(XY)F9) (5 1)) (590)

< exp{—e"7}, (591)

where (588) follows from Lemma 20, (589) follows from the
fact that D(allb) > a(log$ — 1) [29, p. 167], and (591)
follows from R > Ip(X;Y).

From (579) and (591), we obtain

P{N(PXY) zen(ﬁ(R,PyHog(ny))} 2 expl_en)

(592)
if Ip(X;Y) > R.
Similarly, for the case R < Ip(X;Y'), we have
P{N(PXY> = 6"(ﬁ<R*PY>+G—g<PXy>>}
<P{N(Pxy)>e""} o

>

_ { 1{(X.) € T(Pxy)} > em}
me[M]\{m,m’}

<exp{ —e"D((1— e ) e B9

- e_ns)_1e_nzp<x;y>)} (594)

= exp{ —(1—e ™) e [n(Ip(X;Y) - R+0) — 1]}

(595)

< exp{—€"}, (596)

where (594) is obtained by applying Lemma 20 and the change
of measures as the arguments to achieve (591), and (596)
follows from the same arguments to achieve (589), and (596)
follows from Ip(X;Y) > R.

From (577), (592), and (596), we obtain

P{Bn(o,m,m',y)} < exp{—e"}. (597)
From (575) and (597), we finally obtain
A M
P{B,(0)} < Z Z Zexp{—e”"} (598)
m=1lm’'#m Yy
= exp{—e"}. (599)

This concludes our proof of Lemma 16.
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