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Generalized Random Gilbert-Varshamov Codes
Anelia Somekh-Baruch , Member, IEEE, Jonathan Scarlett , Member, IEEE,

and Albert Guillén i Fàbregas , Senior Member, IEEE

Abstract— We introduce a random coding technique for trans-
mission over discrete memoryless channels, reminiscent of the
basic construction attaining the Gilbert–Varshamov bound for
codes in Hamming spaces. The code construction is based on
drawing codewords recursively from a fixed type class, in such a
way that a newly generated codeword must be at a certain min-
imum distance from all previously chosen codewords, according
to some generic distance function. We derive an achievable error
exponent for this construction and prove its tightness with respect
to the ensemble average. We show that the exponent recovers the
Csiszár and Körner exponent as a special case, which is known
to be at least as high as both the random-coding and expurgated
exponents, and we establish the optimality of certain choices
of the distance function. In addition, for additive distances and
decoding metrics, we present an equivalent dual expression, along
with a generalization to infinite alphabets via cost-constrained
random coding.

Index Terms— Gilbert-Varshamov construction, error expo-
nents, random coding, expurgated exponent, mismatched
decoding.

I. INTRODUCTION

THE problem of characterizing the error exponents of
channel coding has been studied extensively since the

early days of information theory. The goal is to establish
bounds on the rate of decay of the error probability for fixed
rates below capacity. While the random coding exponent and
sphere packing exponent establish the exact error exponent at
rates sufficiently close to capacity, the optimal exponent at low
rates has generally remained open, except in the limit of zero
rate.

For discrete memoryless channels (DMC), improvements
over the random-coding exponent at low rates are provided by
the expurgated exponent. The idea of the original derivation
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of this exponent is simple [1]: After generating the codewords
independently at random, remove a fraction of the worst
codewords (i.e., those with the highest error probability) while
keeping enough so that the loss in the rate is negligible.
Alternative derivations have since appeared based on the
method of types and random selection [2], graph decomposi-
tion techniques [3], and type class enumeration [4]. For other
related works, see [5]–[7] and references therein.

In the literature, many of the most commonly-studied error
exponents admit (at least) two equivalent forms:

• A primal expression is written as a minimization over
joint distributions subject to suitable constraints, and is
typically derived using the method of types [2]. Such
derivations often have the advantage of immediately prov-
ing tightness with respect to the random-coding ensemble
under consideration.

• A dual expression is written as a maximization over aux-
iliary parameters, and is typically derived using Gallager-
type techniques [1] such as Markov’s inequality and
min{1, α} ≤ αρ for ρ ∈ [0, 1]. Such derivations often
have the advantage of extending to continuous-alphabet
memoryless channels. In addition, dual expressions pro-
vide achievable exponents for arbitrary fixed choices of
the auxiliary parameters.

This naming convention arises from the fact that the equiv-
alence of the expressions is proved using Lagrange duality.
In the setting of the present paper with a general additive
decoding metric, such equivalences were given for achievable
rates in [8], for random coding error exponents in [9] and [10],
and for expurgated exponents in [4].

In this paper, we introduce a recursive random
coding construction that achieves the exponent of
Csiszár and Körner [3], thus achieving the maximum of
the random-coding and expurgated exponents. The code
construction is based on drawing codewords recursively from
a fixed type class, in such a way that a newly generated
codeword must be at a certain minimum distance from all
previously chosen codewords, according to some generic
distance function. This construction is reminiscent to those
in the binary Hamming space dating back to the 1950s
[11]–[13] (see also [14]–[17]), known to achieve the Gilbert-
Varshamov bound. We therefore adopt the name generalized
Random Gilbert-Varshamov (RGV) code for our randomized
construction with a general distance function and constant-
composition codewords. A related work by Blahut [18]
studied properties of the Bhattacharyya and the equivocation
distance functions and derived generalized bounds similar to
the Gilbert-Varshamov and Elias bounds. These bounds are
used to derive an upper bound on the reliability function.
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Connections with the expurgated exponent are also explored.
Another related work is that of Barg and Forney [19],
who showed that for the binary symmetric channel (BSC),
typical linear codes, whose minimum distance attains the
Gilbert-Varshamov bound, achieve the expurgated exponent.

A. Contributions

The main contributions of this work are as follows:

• As outlined above, we introduce the generalized RGV
construction, and analyze its error exponent for a given
DMC, decoding metric, and distance function. Similarly
to the Gilbert-Varshamov bound, our construction induces
a tradeoff between the rate and the minimum distance of
the code. As well as establishing an achievable exponent,
we derive an ensemble tightness result implying that one
cannot do better with such a construction. Proving this
is non-trivial compared to previous ensemble tightness
results (e.g., for random coding exponents [9], [20] and
achievable rates [8]). Among other things, the distribution
of the drawn codeword depends on its index in the recur-
sive construction, and on all of the previous codewords,
so one cannot use a symmetry argument to focus on a
single message.

• We show that when the distance function is optimized,
the generalized RGV construction achieves the exponent
of Csiszár and Körner [3], which is at least as high as
both the random-coding and expurgated exponents. While
the analysis of [3] establishes the existence of codes
attaining the exponent using a decomposition lemma, our
scheme provides a specific randomized construction that
spreads the codewords according to a generic distance
function, and whose ensemble average directly achieves
the exponent.

• In the case of an additive distance measure (e.g.,
Hamming or Bhattacharyya distance) and decoding met-
ric (e.g., maximum-likelihood), we give an equivalent
dual expression for our error exponent, as well as pro-
viding a direct derivation of the dual form using cost-
constrained random coding [4], [10]. This alternative
derivation allows us to extend the achievability part to
memoryless channels with infinite or continuous alpha-
bets.

• We prove that the distance function that measures close-
ness according to the joint empirical mutual information
(equivalent to the equivocation distance [18]) maximizes
the exponent of our construction, at least among symmet-
ric distance functions depending only on the joint type.
This optimality is universal, in the sense that it holds for
every channel and every type-dependent decoding metric.
In addition, we provide an alternative non-universal
distance function yielding the same error exponent,
and we show that an additive Chernoff-based distance
measure (which reduces to the Bhattacharrya distance
in the case of maximum-likelihood decoding) recovers
both the random coding and expurgated exponents.

B. Notation

The set of probability mass functions on a finite alphabet X
is denoted by P(X ). We use standard notations for entropy,
mutual information, and so on (e.g., I (X; Y ), H (X |Y )), some-
times using a subscript to indicate the underlying distribution
(e.g., IV (X; Y ) for some joint distribution VXY ). These are
all taken to be in units of nats, and the function log has the
natural base. We denote sequences (vectors) in boldfaced font,
e.g., x. For i < j , we let x j

i denote (xi , . . . , x j ), and similarly,
X j

i = (X i , . . . , X j ).
We make frequent use of types [2, Ch. 2]. The type (i.e.,

empirical distribution) of a sequence x is denoted by P̂x , and
similarly for joint types P̂x y and conditional types P̂y|x . The
set of all types for a given sequence length n is denoted by
Pn(X ). The type class T (P) is the set of all sequences with
type P , and the conditional type class T (P

˜X |X ) is the set of

all ˜X -sequences inducing a given conditional type P
˜X |X for

an arbitrary fixed X-sequence (whose type will be clear from
the context).

For two positive sequences fn and gn, we write fn
.= gn

when limn→∞ 1
n log fn

gn
= 0, fn ≤̇ gn when lim supn→∞

1
n log fn

gn
≤ 0, and similarly for ≥̇.

C. Structure of the Paper

In Section II, we formally introduce the channel coding
setup and introduce additional notation. In Section III,
we describe the recursive random codebook construction
and establish its main properties. Section IV gives the main
result and its proof, and Section V gives the equivalent dual
expression and its direct derivation. Section VI studies the
optimality of some specific distance functions.

II. PROBLEM SETUP

We consider the problem of reliable transmission over a
DMC described by a conditional probability mass function
W (y|x), with input x ∈ X and output y ∈ Y for finite
alphabets X and Y . We define

W n(y|x) =
n

∏

k=1

W (yk |xk) (1)

for input/output sequences x = (x1, . . . , xn) ∈ X n, y =
(y1, . . . , yn) ∈ Yn . We use the notation X,Y to denote
the corresponding random variables. Infinite and continuous
alphabets are addressed in Section V.

An encoder maps a message m ∈ {1, . . . ,Mn} to a channel
input sequence xm ∈ X , where the number of messages
is denoted by Mn . The message, represented by the ran-
dom variable S, is assumed to take values on {1, . . . ,Mn}
equiprobably. This mapping induces an (n,Mn )-codebook
Cn = {x1, . . . , xMn } with rate Rn = 1

n log Mn .
The decoder has access to the codebook and, upon observ-

ing the channel output y, produces an estimate of the trans-
mitted message m̂ ∈ {1, . . . ,Mn}. We consider the family of
maximum metric decoders for which the transmitted message
is estimated as

m̂ = arg max
xi∈Cn

q (xi , y) (2)
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where q (x, y) : X n × Yn → R is a generic decoding metric.
Whenever two or more candidate codewords have the same
decoding metric, an error will be assumed. Whenever q (x, y)
is an increasing function of the channel transition law W n(y|x)
we recover the maximum-likelihood (ML) decoder. Otherwise,
the decoder is said to be mismatched [8], [21]. Throughout
the paper, we assume that the decoding metric q (x, y) only
depends on the joint empirical distribution (or type) of x, y,
i.e., P̂x,y. In this case, we write the decoder as

m̂ = arg max
x∈Cn

q(P̂x,y), (3)

where we assume that the type-dependent metric
q : P(X ×Y) → R is continuous (and therefore bounded) on
the probability simplex.1 An important class of such metrics
is the class of additive metrics, taking the form

q(P̂x,y) = 1

n

n
∑

i=1

q(xi , yi ) = EP̂x,y
[q(X,Y )], (4)

where q(x, y) is a single-letter metric (abusing notation
slightly), and the average is with respect to the joint
empirical distribution. A notable example of a non-additive
type-dependent metric is the empirical mutual information,
q(P̂x,y) = IP̂x,y

(X; Y ).
Denoting the random variable corresponding to the decoded

message by Ŝ, we define the probability of error as Pe =
Pr

(

Ŝ �= S
)

. A rate-exponent pair (R, E) is said to be
achievable for channel W if, for all � > 0, there exists a
sequence of (n, en(R−�))-codebooks such that

lim inf
n→∞ − 1

n
log Pr

(

Ŝ �= S
) ≥ E − �. (5)

Equivalently, we say that E is an achievable error exponent at
rate R if (R, E) is an achievable rate-exponent pair.

III. RANDOM CODEBOOK AND PROPERTIES

In this section, we introduce our recursive random coding
scheme, and state its main properties used for deriving the
associated error exponent.

Codes that attain the Gilbert-Varshamov bound on the
Hamming space [11], [12] ensure that all codewords are at
least at a certain target Hamming distance � from each other.
The generalized RGV construction is a randomized constant-
composition counterpart of such codes for arbitrary DMCs and
more general distance functions.

Definition 1. Let � be the set of bounded, continuous, sym-
metric, and type-dependent functions d(·, ·) : X n × X n → R,
i.e., bounded functions that satisfy d(x, x�) = d(x�, x) for all
x, x� ∈ X n, that depend on (x, x�) only through the joint
empirical distribution P̂xx� , and that are continuous on the
probability simplex.

We use the notation d(x, x�) and d(P̂xx�) interchangeably
for convenience, similarly to q(x, y) and q(P̂x y). We
refer to d ∈ � as a distance function, though it need not

1Similarly to [3], our analysis easily extends to the ML decoding metric,
for which q(x, y) may equal −∞ when Wn ( y|x) = 0.

be a distance in the topological sense (e.g., it may be
negative).

Some examples of distance functions in � are as follows:
• We say that the distance function is additive if it can be

written as

d(x, x�) = 1

n

n
∑

k=1

d(xk, x �
k) (6)

for some single-letter function d(x, x �) (abusing notation
slightly). Any such distance function is in �, as long
as d(x, x �) is symmetric. Notable examples include the
Hamming distance

dH(x, x �) = �{x � �= x}, (7)

and the Bhattacharyya distance

dB(x, x �) = − log
∑

y∈Y

√

W (y|x)W (y|x �). (8)

Note that the latter choice depends on the channel, and to
satisfy the boundedness assumption we require that any
two inputs have a common output that is produced with
positive probability.

• We will later consider a distance equal to the nega-
tive mutual information, d(PX ˜X ) = −IP(X; ˜X), which
will turn out to be universally optimal subject to the
constraints of our construction. For constant-composition
codes, it is equivalent to the equivocation distance
d(PX ˜X ) = HP( ˜X |X), which was considered in a different
but related context by Blahut [18].

In the following, we describe how to construct a code Cn

with Mn codewords of length n, such that any two distinct
codewords x, x� ∈ Cn satisfy d(x, x �) > � for a given
function d(·, ·) ∈ � and threshold � ∈ R. This guarantees
that the minimum distance of the codebook exceeds �. The
construction depends on an input distribution P ∈ P(X ),
and throughout the paper, we let Pn ∈ Pn(X ) denote an
arbitrary type with the same as support as P satisfying
maxx∈X |Pn(x)− P(x)| ≤ 1

n .
Along with P ∈ P(X ), fixing n,Mn , a distance function

d(·, ·) ∈ �, and constants δ > 0,� ∈ R, the construction is
described by the following steps:

1) The first codeword, x1, is drawn uniformly from T (Pn);
2) The second codeword x2 is drawn uniformly from

T (Pn, x1) � {x̄ ∈ T (Pn) : d(x̄, x1) > �} (9)

= T (Pn)\ {x̄ ∈ T (Pn) : d(x̄, x1) ≤ �} ,
(10)

i.e., the set of sequences with composition Pn whose
distance to x1 exceeds �;

3) Continuing recursively, the i -th codeword xi is drawn
uniformly from

T (Pn, x i−1
1 )

�
{

x̄ ∈ T (Pn) : d(x̄, x j ) > �, j = 1 . . . , i − 1
}

(11)

= T (Pn, x i−2
1 )\

{

x̄ ∈ T (Pn, xi−2
1 ) : d(x̄, xi−1) ≤ �

}

.

(12)
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Throughout the paper, it will be useful to generalize the
notation T (Pn, xi−1

1 ) as follows. For any subset D ⊆ T (Pn),
we define

T (Pn,D) � {x ∈ T (Pn) : d(x, x�) > �, ∀x� ∈ D}. (13)

In Lemma 1 below, we will show that in order to ensure
that the above procedure generates the desired number of
codewords Mn = enRn (i.e., the sets T (Pn, xi−1

1 ) are non-
empty for all i = 1, . . . ,Mn ), it suffices to choose � and δ
such that

en(Rn+δ)volx(�) ≤ |T (Pn)| (14)

where volx(�) = |{x̄ ∈ T (Pn) : d(x̄, x) ≤ �}| is the
“volume” of a “ball” of radius � according to the “distance”
d(·, ·), centered at some x ∈ T (Pn). Since d ∈ � is symmetric
and type-dependent, volx(�) does not depend on the specific
choice of x ∈ T (Pn). It will be convenient to rewrite (14) as

∑

x̄∈T (Pn) : d(x̄,x)≤�

1

|T (Pn)| ≤ e−n(Rn+δ). (15)

A. Codebook Properties

Here we provide several lemmas characterizing the key
properties of the generalized RGV construction. We begin with
the fact that the construction is well-defined, in the sense that
the procedure described above always produces the desired
number of codewords Mn , i.e., the set T (Pn, xi−1

1 ) given the
previous codewords is always non-empty.

Lemma 1. The generalized RGV codebook construction with
condition (15) is such that for all i ∈ {1, . . . ,Mn}, all xi−1

1
occurring with non-zero probability, and any δ > 0, we have

(1 − e−nδ)|T (Pn)| ≤ |T (Pn, xi−1
1 )| ≤ |T (Pn)|. (16)

Proof. The upper bound is trivial, since

T (Pn, x Mn−1
1 ) ⊆ · · · ⊆ T (Pn, xi−1

1 ) ⊆ T (Pn, xi−2
1 )

⊆ · · · ⊆ T (Pn). (17)

For the lower bound, we make use of (14)–(15). After Mn =
enRn iterations of the above procedure, we have removed
no more than enRn volx(�) ≤ |T (Pn)|e−nδ sequences from
T (Pn). This implies that after iteration Mn = enRn ,

|T (Pn, xMn−1
1 )| ≥ |T (Pn)| − enRn volx(�) (18)

≥ |T (Pn)|(1 − e−nδ). (19)

The lower bound in (16) for i ∈ {1, . . . ,Mn} follows
from (19) and (17). �

Henceforth, whenever we refer to the generalized RGV
construction, this implicitly includes the condition (15) (or
equivalently (14)).

The following lemmas provide upper and lower bounds
on the marginal distributions of small numbers of codewords
(up to three) in the RGV construction. We make use of the
following exponentially vanishing quantity:

δn � e−nδ

1 − e−nδ
. (20)

We begin with the joint distribution between two codewords,
as this plays the most important role in our analysis. Here
and subsequently, Pr(xk, xm) is a shorthand for Pr(Xk =
xk, Xm = xm), and similarly for other expressions such as
Pr(xi , x j , xk).

Lemma 2. Under the generalized RGV construction, for any
k ∈ {1, . . . ,Mn − 1}, m > k and xk, xm ∈ T (Pn),
if d(xk, xm) > � then we have

(1 − 4δ2
n)

|T (Pn)|2 e−2δn ≤ Pr(xk, xm) ≤ 1

(1 − e−nδ)2|T (Pn)|2 , (21)

while Pr(xk, xm) = 0 whenever d(xk, xm) ≤ �.

Proof. See Appendix A. �
Note that here k and m are arbitrary indices, and m need not

correspond to the transmitted message. In some cases, we will
apply the lemma with m being the transmitted message.

For the joint distribution between three codewords, we will
only require an upper bound, and it will only be used for the
ensemble tightness part.

Lemma 3. Under the generalized RGV construction, for any
i, j, k ∈ {1, . . . ,Mn}, such that i < j < k and xi , x j , xk ∈
T (Pn), if min{d(xi , x j ), d(xi , xk), d(x j , xk)} > � then

Pr(xi , x j , xk) ≤ 1

(1 − e−nδ)3|T (Pn)|3 , (22)

while min{d(xi , x j ), d(xi , xk), d(x j , xk)} ≤ � whenever
Pr(xi , x j , xk) = 0.

Proof. See Appendix B. �
Finally, by a basic symmetry argument, the marginal distri-

bution of any given codeword Xm (without any conditioning)
is uniform over T (Pn), as stated in the following.

Lemma 4. For any message index m, the marginal distribu-
tion of codeword Xm is Pr(xm) = 1

|T (Pn)| for xm ∈ T (Pn),
and zero elsewhere.

Proof. See Appendix C. �

IV. MAIN RESULT

Using graph decomposition techniques, Csiszár and Körner
[3] studied the error exponents of constant-composition codes
under a decoder that uses a type-dependent decoding metric
q(P̂x,y), and derived the following achievable exponent for an
arbitrary input distribution P:

Eq(R, P,W ) = min
V ∈TI

D(VY |X �W |P) + ∣

∣I ( ˜X ; Y, X) − R
∣

∣+,

(23)

where

TI �
{

VX ˜XY ∈ P(X × X × Y) :
VX = V

˜X = P, q(V
˜XY ) ≥ q(VXY ), I (X; ˜X ) ≤ R

}

. (24)

This exponent was shown to be at least as high as the
maximum of the expurgated exponent and the random coding
exponent.
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The following theorem presents an exact single-letter
expression for the error exponent of the recursive RGV
codebook construction described in the previous section. We
show in Section VI that it reduces to the exponent of [3],
Eq(R, P,W ), when the distance function d(·, ·) is optimized.

Letting

ERGV(R, P,W, q, d,�)

= min
VX ˜XY ∈Td,q,P (�)

D(VY |X�W |P) + ∣

∣I ( ˜X ; Y, X)− R
∣

∣+,

(25)

where

Td,q,P(�) �
{

VX ˜XY ∈ P(X × X × Y) :
VX = V

˜X = P, q(V
˜XY ) ≥ q(VXY ), d(VX ˜X ) ≥ �

}

, (26)

we have the following.

Theorem 1. For all P ∈ P(X ), δ > 0, � ∈ R, d ∈ �, and
R > 0 satisfying

R ≤ min
PX ˜X : d(PX ˜X )≤�, PX=P

˜X =P
I (X; ˜X)− 2δ, (27)

the ensemble average error probability P̄(n)e of the generalized
RGV construction with parameters (n, R, P, d,�, δ) and the
bounded continuous type-dependent decoding metric q(·) over
the DMC W satisfies

P̄(n)e
.≤ e−nERGV(R,P,W,q,d,�). (28)

In addition, if q is an additive decoding metric, then

P̄(n)e
.≥ e−nERGV(R,P,W,q,d,�+�) (29)

for arbitrarily small � > 0.

The achievability proof (i.e., upper bound on the error prob-
ability) is given in Section IV-A, and the ensemble tightness
proof (i.e., lower bound on the error probability) for additive
metrics is given in Section IV-B.

As will be shown in Section VI, under the rate con-
straint (27), if the distance function is chosen appropriately,
the generalized RGV construction achieves the exponent
Eq(R, P,W ) in (23), which in turn shows the achievability of
capacity for ML decoding or the LM rate in the mismatched
case [3], [22]. Moreover, for a distance function d that
uniquely attains its minimum value when X = X �, varying
� from its minimum to maximum value yields all possible
values of rates in (0, H (P)), which covers the entire range of
possible rates with constant composition codes.

Theorem 1 implies that the exact exponent of the cod-
ing scheme equals ERGV(R, P,W, q, d,�) whenever � is
a continuity point. We note that while the additivity of q(·)
is required for the derivation of the lower bound on P̄(n)e ,
the upper bound holds also for any continuous q(·) that need
not be additive. For non-additive q , in the assertion of the
lower bound (29) for non-additive q , we would have to replace
ERGV(R, P,W, q, d,� + �) by

min
VX ˜XY ∈Td,q,P,� (�+�)

D(VY |X �W |P) + ∣

∣I ( ˜X ; Y, X) − R
∣

∣+,

(30)

where

Td,q,P,�(�+ �) �
{

VX ˜XY ∈ P(X × X × Y) :
VX = V

˜X = P, q(V
˜XY ) ≥ q(VXY )+ �, d(VX ˜X ) ≥ �+ �

}

,

(31)

that is, we would have the extra � in q(V
˜XY ) ≥ q(VXY )+ �.

While this yields the desired tightness result whenever the
optimization is "continuous" with respect to the metric con-
straint, it is unclear in what generality such continuity holds.
As a simple example, Td,q,P,�(�+ �) is always empty under
the erasures-only metric q(x, y) = �{W (y|x) > 0}, meaning
that (30) does not provide a tightness result in this case.

By a simple symmetrization argument, we can show that
ERGV(R, P,W, q, d,�) is an achievable error exponent even
when d is not symmetric. This is stated in the following.

Corollary 1. Under the setup of Theorem 1 with a non-
symmetric continuous type-dependent bounded distance func-
tion d, if the pair (R,�) satisfies (27), then the error exponent
ERGV(R, P,W, q, d,�) is achievable at rate R.

Proof. We apply Theorem 1 with the symmetric distance

d �(x, x�) = min
{

d(x, x�), d(x�, x)
}

. (32)

Notice that this choice enforces d(x, x �) > � for all pairs
(xi , x j ) in the codebook, regardless of whether i < j or i > j .

The exponent in (25) with symmetric distance d � simplifies
as follows:

min
V :VX =V

˜X =P,
q(V

˜XY )≥q(VXY ),
min{d(PX ˜X ),d(P˜X X )}≥�

D(VY |X�W |P) + [I ( ˜X ; X,Y )− R]+

≥ min
V :VX =V

˜X =P,
q(V

˜XY )≥q(VXY ),
d(PX ˜X )≥�

D(VY |X �W |P) + [I ( ˜X ; X,Y )− R]+,

(33)

since on the right-hand side we are minimizing over a larger
set. Moreover, the minimization in the rate condition (27) with
distance d � simplifies as follows:

min
PX ˜X : PX =P

˜X =P,min{d(PX ˜X ),d(P˜X X )}≤�
I (X; ˜X)

= min

{

min
PX ˜X : PX =P

˜X =P,d(PX ˜X )≤�
I (X; ˜X),

min
PX ˜X : PX =P

˜X =P,d(P
˜X X )≤�

I (X; ˜X)

}

(34)

= min
PX ˜X : PX =P

˜X =P,d(PX ˜X )≤�
I (X; ˜X ), (35)

where the second line follows since minz∈A∪B f (z) =
min

{

minz∈A f (z),minz∈B f (z)
}

, and the last line follows
from the symmetry of mutual information. �

We briefly discuss the proof of Theorem 1. While the
theorem states the error exponent, the central part of the
analysis is in arriving at the following asymptotic expression
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for the ensemble average probability of error:

P̄(n)e
.=

∑

x∈T (Pn),y

1

|T (Pn)| W n(y|x)

× min

{

1, (Mn − 1)
∑

x�∈T (Pn) : q (x�,y)≥q (x,y)
d(x�,x)≥�

1

|T (Pn)|
}

, (36)

which holds for every type-dependent decoding metric q (not
necessarily additive or continuous). This can be interpreted as
a stronger (albeit asymptotic) analog of the random coding
union bound [23] that achieves not only the random coding
exponent, but also the low-rate improvements of the expur-
gated exponent.

It is also worth discussing the connection of Theorem 1 with
the analysis of [3] based on graph decomposition techniques.
A key result shown therein is the existence of a rate-R constant
composition codebook Cn such that each x ∈ Cn satisfies

|TV̄ (x) ∩ Cn| ≤ exp{n(R − I (P, V̄ ))} (37)

for all conditional types V̄ representing a “channel” from
X → X , where I (P, V̄ ) = IP×V̄ (X; X �). In the derivation
of Eq (cf., (23)), (37) is used to establish the empirical
mutual information bound IP̂x,x � (X; X �) ≤ R for any two

codewords x, x� ∈ Cn . It is also used to upper bound the
number of output sequences y that can give rise to a given
joint type P̃X X �Y , with (37) characterizing the P̃X X marginal
and standard techniques characterizing P̃Y |X X � .

Although it was not shown in [3], (37) can be used to
establish the achievability part of Theorem 1 for general
distance functions. To see this, let Imin be the smallest empir-
ical mutual information among codeword pairs (x; x�) with
d(x; x�) ≤ �, as stated in Theorem 1. If R < Imin, then
the left-hand side of (37) is zero, meaning all codeword pairs
satisfy d(x; x�) > �. Upon noticing this fact, the rest of the
proof of [3, Th. 1] remains essentially unchanged and yields
the RGV exponent.

Compared to [3] and other related works, the main advan-
tages of our approach are as follows: (i) We provide an
explicit recursive random coding construction rather than only
proving existence; (ii) We establish, to our knowledge, the first
ensemble tightness result for any construction achieving the
expurgated exponent; (ii) We provide a direct extension to
channels with continuous alphabets, whereas [3] relies heavily
on combinatorial arguments and types.

A. Proof of Achievability (Upper Bound on P̄(n)e )

The proof is given in three steps.

Step 1: Characterizing the permitted rates

For convenience, we define

R� � min
PX ˜X ∈P(X 2) : d(PX ˜X)≤�, PX=P

˜X =P
I (X; ˜X)− 2δ. (38)

Recalling that T (P
˜X |X ) stands for a conditional type class

[2, Ch. 2] corresponding to x ∈ T (Pn), and letting Pn(X |x)

be the set of all conditional types, we have for n sufficiently
large that

∑

x̄∈T (Pn) : d(x̄,x)≤�

1

|T (Pn)|

≤ (n + 1)|X |2 max
P

˜X |X ∈Pn(X |x) : P
˜X =PX =Pn

d(PX ˜X )≤�

|T (P
˜X |X )|

|T (Pn)| (39)

≤ exp

(

− n

(

min
PX ˜X ∈Pn(X 2) : d(PX ˜X )≤�

PX =P
˜X =P

I (X; ˜X )− δ

))

(40)

≤ e−n(R�+δ), (41)

where (39) follows since the number of conditional types is
upper bounded by (n + 1)|X |2 , (40) holds for n sufficiently
large because |T (P

˜X |X )| .= enHP (˜X |X) and |T (Pn)| .= enH(P)

[2, Ch. 2], and (41) follows from (38) and the fact that
Pn(X 2) ⊆ P(X 2). Hence, if the rate of the generalized RGV
construction satisfies Rn ≤ R�, we have

∑

x̄∈T (Pn) : d(x̄,x)≤�

1

|T (Pn)| ≤ e−n(Rn+δ), (42)

which is precisely the condition assumed in (15).
We henceforth assume that the number of codewords of

the generalized RGV construction is such that Rn ≤ R�, and
calculate the resulting average probability of error.

Step 2: Conditional error probability

We define the i -th pairwise error event given (Xm,Y ) =
(xm, y), where i �= m as

Ei = {q (X i , y) ≥ q (xm , y)} , (43)

meaning that the random codeword X i is favored over xm

(or the two are favored equally). The ensemble average error
probability is

P̄(n)e = 1

Mn

Mn
∑

m=1

P̄(n)e,m , (44)

where the probability of error assuming that the m-th codeword
has been transmitted is

P̄(n)e,m = E[Pr(error | Xm ,Y )], (45)

and where

Pr(error | xm , y) = Pr

⎛

⎜

⎜

⎝

Mn
⋃

i=1
i �=m

Ei

∣

∣

∣

∣

Xm = xm ,Y = y

⎞

⎟

⎟

⎠

(46)

is the probability of decoding error for the m-th codeword
assuming that the realizations of the codeword and received
sequences are xm and y (recall that ties are counted as errors).
We initially perform the analysis conditioned on the transmit-
ted and received sequences being xm and y, respectively (and
implicitly on m being transmitted), and later we duly average
over these choices.
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Now, since only sequences xi such that d(xi , xm) > �
have positive probability conditioned on Xm = xm , we have

Pr(Ei |xm, y)

=
∑

xi : q (xi ,y)≥q (xm ,y)
d(xi ,xm )>�

Pr(xi |xm, y) (47)

=
∑

xi : q (xi ,y)≥q (xm ,y)
d(xi ,xm )>�

Pr(xi |xm) (48)

=
∑

xi : q (xi ,y)≥q (xm ,y)
d(xi ,xm )>�

Pr(xi , xm)

Pr(xm)
(49)

≤ 1

(1 − e−nδ)2

∑

xi ∈T (Pn) : q (xi ,y)≥q (xm ,y)
d(xi ,xm)>�

1

|T (Pn)| , (50)

where (48) follows since X i − Xm −Y forms a Markov chain,
and (50) follows from Lemmas 2 and 4.

Applying the union bound to (46) and substituting (50),
we obtain

Pr(error | xm, y)

≤
∑

i∈{1,...,Mn},
i �=m

Pr
(

Ei
∣

∣ Xm = xm,Y = y
)

(51)

≤ 1

(1 − e−nδ)2

∑

i∈{1,...,Mn},
i �=m

∑

xi ∈T (Pn) :
q (xi ,y)≥q (xm ,y)

d(xi ,xm)≥�

1

|T (Pn)| (52)

= (Mn − 1)
1

(1 − e−nδ)2

∑

x�∈T (Pn) :
q (x�,y)≥q (xm ,y)

d(x�,xm)>�

1

|T (Pn)| , (53)

where (53) follows since summands in the summation over xi

are equal for all i .
Applying the obvious inequality Pr(error | xm, y) ≤ 1, and

slightly enlarging the set of summands by replacing d(x�, x) >
� by d(x�, x) ≥ �, it follows that

P̄(n)e
.≤

∑

x∈T (Pn),y

1

|T (Pn)|W n(y|x)

× min

{

1, (Mn − 1)
∑

x�∈T (Pn) :
q (x�,y)≥q (x,y)

d(x�,x)≥�

1

|T (Pn)|
}

, (54)

where we have averaged over (xm , y) and used Lemma 4.

Step 3: Deducing the error exponent

Deducing the error exponent from (54) amounts to a standard
analysis based on the method of types, so we provide a rather
brief treatment.

Similarly to (39), the inner sum in (54) satisfies

∑

x�∈T (Pn):
q (x�,y)≥q (x,y),

d(x�,x)≥�

1

|T (Pn)|
.≤ max

P̂x� |x y∈Pn(X |x y):
q (x�,y)≥q (x,y)

d(x�,x)≥�

|T (P̂x�|x y)|
|T (Pn)| . (55)

Applying the standard properties of types |T (P̂x �|x y)| .=
enHP̂ (

˜X |Y,X) and |T (Pn)| .= enH(Pn) [2, Ch. 2], we can simplify
the objective on the right-hand side of (55) to e−nI (˜X ;X,Y ).
Moreover, we have W n(y|x) = en(D( P̂y|x�W |Pn)+H( P̂y|x )),
which implies that (Xm ,Y) has a given conditional type
VY |X with probability e−nD(VY |X�W |Pn) times a subexponential
factor. Using the following continuity lemma to replace Pn by
its limiting value P , we deduce the final single-letter exponent:

P̄(n)e
.≤ e−n minV ∈Td,q,P (�) D(VY |X�W |P)+|I (˜X;Y,X)−R|+, (56)

where Td,q,P(�) is defined in (26).

Lemma 5. Consider a DMC W and an input distribution
P ∈ P(X ), along with continuous and bounded d, q and a
threshold �. For any sequence Pn ∈ P(X ) with the same
support as P such that Pn(x) → P(x) for all x , we have

lim inf
n→∞ ERGV(R, Pn ,W, q, d,�) ≥ ERGV(R, P,W, q, d,�).

(57)

Proof. See Appendix D. �

B. Proof of Ensemble Tightness (Lower Bound on P̄(n)e )

We proceed in two steps.

Step 1: Lower bounding the conditional error probability

We shall use the de Caen’s lower bound on the probability
of a union [24] of events {Ei}M

i=1:

Pr

( M
⋃

i=1

Ei

)

≥
M

∑

i=1

[Pr(Ei )]2

∑M
j=1 Pr(Ei ∩ E j )

. (58)

Explicitly taking into account the case in which Pr(Ei ) can
be zero for some i values, in which case Pr

(
⋃M

i=1 Ei
) =

Pr
(
⋃

i : Pr(Ei )>0 Ei
)

, we rewrite the de Caen bound as follows:

Pr

( M
⋃

i=1

Ei

)

≥
M

∑

i=1,
Pr(Ei )>0

[Pr(Ei )]2

Pr(Ei )+ ∑

j �=i Pr(Ei ∩ E j )
. (59)

Recalling (44)-(46), and applying (59) to the events {Ei }Mn
i=1

defined in (43), we obtain

Pr

( Mn
⋃

i=1
i �=m

Ei

∣

∣

∣

∣

Xm = xm,Y = y
)

≥
Mn
∑

i=1,i �=m,
Pr(Ei |xm ,y)>0

[

Pr(Ei |xm, y)
]2

Pr(Ei |xm, y)+ ∑

j /∈{i,m} Pr(Ei ∩ E j |xm , y)
.

(60)

We first lower bound Pr(Ei |xm, y) using (49) along with
Lemmas 2 and 4 to obtain

Pr(Ei |xm, y)

≥ (1 − 4δ2
n)e

−2δn
∑

x�∈T (Pn) : q (x�,y)≥q (xm ,y)
d(x�,xm)>�

1

|T (Pn)| . (61)
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Next, we evaluate Pr(Ei ∩ E j |xm , y). To this end we
let Id,�(xi , x j , xm) denote the indicator of the event of
(xi , x j , xm) mutually satisfying the pairwise d-distance con-
straints; i.e.,

Id,�(xi , x j , xm)

= �{min{d(xi , x j ), d(xi , xm), d(xm, x j )} > �}. (62)

From Lemmas 3 and 4, we obtain

Pr(xi , x j |xm) = Pr(xi , x j , xm)

Pr(xm)
(63)

= Pr(xi , xm , x j )

1/|T (Pn)| (64)

≤ Id,�(xi , x j , xm)

(1 − e−nδ)3|T (Pn)|2 . (65)

Now, since (X i , X j )− Xm − Y forms a Markov chain,

Pr(Ei ∩ E j |xm , y)

=
∑

xi ,x j : q(xi ,y)≥q(xm ,y),
q(x j ,y)≥q(xm ,y)

Pr(xi , x j |xm, y) (66)

=
∑

xi ,x j : q(xi ,y)≥q(xm ,y),
q(x j ,y)≥q(xm ,y)

Pr(xi , x j |xm) (67)

.≤
∑

xi ,x j ∈T (Pn) : q(xi ,y)≥q(xm ,y),
q(x j ,y)≥q(xm ,y)

Id,�(xi , x j , xm)

|T (Pn)|2 (68)

≤
∑

xi ,x j ∈T (Pn) :
q(xi ,y)≥q(xm ,y),
q(x j ,y)≥q(xm ,y)

�{min{d(xi , xm), d(xm, x j )} > �}
|T (Pn)|2 (69)

=
∑

xi∈T (Pn) : q(xi ,y)≥q(xm ,y)

�{d(xi , xm) > �}
|T (Pn)|

×
∑

x j ∈T (Pn) : q(x j ,y)≥q(xm ,y)

�{d(x j , xm) > �}
|T (Pn)| (70)

.≤ Pr(Ei |xm, y) Pr(E j |xm , y). (71)

where (68) follows from (65), (69) follows since by definition
of Id,�(xi , x j , xm) (see (62)), and (71) follows from (61).

Combining (60) and (71) yields

Pr

( Mn
⋃

i=1,
i �=m

Ei |xm , y
)

.≥
Mn
∑

i=1,i �=m,
Pr(Ei |xm ,y)>0

[

Pr(Ei |xm, y)
]2

(

Pr(Ei |xm, y)

+ Pr(Ei |xm, y) ·
∑

j /∈{i,m}
Pr(E j |xm , y)

)−1

(72)

=
Mn
∑

i=1,
i �=m

Pr(Ei |xm , y)
1 + ∑

j /∈{i,m} Pr(E j |xm, y)
, (73)

where (73) follows since fixing i we have that if
Pr(Ei |xm, y) = 0, then obviously the i -th summand on the
r.h.s. of (73) is equal to zero and therefore does not affect
the summation, and if Pr(Ei |xm , y) > 0, this term can
be cancelled out from both the numerator and denominator,
in which case the i summand on the l.h.s. of (73) is equal to
that of the r.h.s. of (73).

Since (50) and (61) imply that

Pr(Ei |xm, y) .=
∑

x� : q (x� y)≥q (xm ,y)
d(x�,xm)>�

1

|T (Pn)| , (74)

letting p̃(xm, y) denote the right-hand side of (74), we obtain

Pr

( Mn
⋃

i=1,
i �=m

Ei |xm, y
)

.≥ (Mn − 1) · p̃(xm , y)
1 + (Mn − 2) p̃(xm, y)

(75)

≥ (Mn − 1) p̃(xm, y)
1 + (Mn − 1) p̃(xm , y)

(76)

≥ 1

2
min{1, (Mn − 1) p̃(xm, y)}, (77)

where the last step follows from the inequality x
1+x ≥

1
2 min{1, x}, which holds for all x ≥ 0.

Averaging over (xm , y) via Lemma 4, and substituting the
definition of p̃(xm, y), we obtain the lower bound

P̄(n)e,m
.≥

∑

x∈T (Pn),y

1

|T (Pn)| W n(y|x)

× min

{

1, (Mn − 1)
∑

x�∈T (Pn) : q (x�,y)≥q (x,y)
d(x�,x)>�

1

|T (Pn)|
}

.

(78)

Step 2: Deducing the error exponent

Applying a similar argument to that used in deriving (56),
we obtain from (78) that

P̄(n)e
.≥ exp

(

− n min
V ∈T (n)

d,q (�)

D(VY |X �W |Pn)

+ ∣

∣I ( ˜X ; Y, X) − R
∣

∣+
)

(79)

where

T (n)
d,q,P(�) �

{

VX ˜XY ∈ Pn(X × X × Y) :
VX = V

˜X = Pn, q(V
˜XY ) ≥ q(VXY ), d(PX ˜X ) ≥ �

}

. (80)

Note that this exponent differs from ERGV(R, P,W, φ, d,�)
only in that the minimization is performed over empirical
distributions rather than the probability simplex. The following
lemma concludes the proof of ensemble tightness; this is the
only part of the analysis where the assumption of additive q
is used.
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Lemma 6. Given P ∈ P(X ) and its corresponding type
Pn ∈ Pn(X ), under any d ∈ � and additive and bounded
metric q, we have for any � > 0 and sufficiently large n that

min
V ∈T (n)

d,q (�)

D(VY |X �W |Pn)+
∣

∣I ( ˜X ; Y, X) − R
∣

∣+

≤ ERGV(R, P,W, q, d,� + �)+ �. (81)

The proof of Lemma 6 is given in Appendix E.

V. DUAL EXPRESSION AND CONTINUOUS ALPHABETS

In this section, we show that in the case that the distance
function d and decoding metric q are additive, the RGV
exponent of Theorem 1 permits an equivalent dual expression
obtained using Lagrange duality. Moreover, we explain how
it can be derived directly using cost-constrained coding
[1], [4], [10], without resorting to constant-composition
coding. This approach extends directly to memoryless
channels with infinite or continuous alphabets under mild
technical assumptions, namely, that all auxiliary cost functions
involved have a finite mean with respect to P .

A. Dual Expression

We begin by stating the dual form of the RGV exponent and
rate condition in Theorem 1. As mentioned above, we focus
on additive distances of the form (6), and additive decoding
metrics of the form (4)

Theorem 2. Under the setup of Theorem 1 with an additive
distance function d and additive decoding metric q, the error
exponent (25) can be written as

ERGV(R, P,W, q, d,�)

= sup
ρ∈[0,1],r≥0,s≥0,a(·)

−
∑

x

P(x) log
∑

y

W (y|x)

×
(∑

x � P(x �)esq(x �,y)ea(x �)er(d(x,x �)−�)

esq(x,y)ea(x)

)ρ

− ρR, (82)

and rate condition (27) can be written as

R ≤ sup
r≥0,a(·)

−
∑

x

P(x)

× log
∑

x �
P(x �)ea(x �)−φa e−r(d(x,x �)−�) − 2δ, (83)

where φa = EP [a(X)].
Proof. The proof uses Lagrange duality analogously to the
corresponding statements for the random coding and expur-
gated exponents [4], [10]; see Appendix F. �

The expression in (82) bears a strong resemblance to the
mismatched random coding exponent for constant-composition
coding [9]; in fact, the only difference is the presence of
additional term er(d(x,x �)−�).

The proof of Theorem 2 does not use the symmetry of d ,
and hence the equivalence holds even for non-symmetric d as
per Corollary 1. The direct derivation below, however, does
require a symmetric distance function, but one can still infer
the achievability of the exponent for non-symmetric choices
via the symmetrization argument used in Corollary 1.

B. Direct Derivation via Cost-Constrained Coding

One way of understanding (82) is by noting that it is the
exponent that one obtains upon applying Gallager-type bound-
ing techniques, e.g., Markov’s inequality and min{1, α} ≤
minρ∈[0,1] αρ , to the asymptotic multi-letter random coding
union bound expression in (36) for constant-composition
coding. To our knowledge, the “dual analysis” of constant-
composition random coding was initiated by Poltyrev [25].

The preceding approach permits continuous channel
outputs, but requires discrete inputs. It turns out, however,
that we can attain an analog of (36) for a cost-constrained
coding scheme in which the input may also be continuous.
In this section, we describe the changes needed in the code
construction and analysis for this purpose. To simplify the
presentation, we still use summations to denote averaging,
but these can directly be replaced by integrals in continuous-
alphabet settings. A disadvantage of this approach is that
it is difficult to claim ensemble tightness; we provide only
achievability results.

1) Code Construction: Fix an input distribution P and four
auxiliary costs a1(x), . . . , a4(x). Let Pn be the n-fold product
of P , let a j (x) = 1

n

∑n
k=1 a j (xk) be the normalized additive

extension of a j , and define the cost-constrained distribution

PX (x) = 1

μ
Pn(x)�

{

∣

∣a j (x)−φ j
∣

∣ ≤ �, j = 1, 2, 3, 4
}

, (84)

where Pn(x) = ∏n
k=1 P(xk), φ j = EP [a j (X)], � > 0 is

a parameter, and μ is a normalizing constant. Note that the
functions a j represent auxiliary costs that are intentionally
introduced to improve the performance (in terms of the error
exponent) of the random-coding ensemble. One can incorpo-
rate a system cost (e.g., a power constraint) in exactly the
same way to ensure a per-codeword constraint of the form
1
n

∑n
k=1 c(xk) ≤ 	 for some cost function c and threshold 	;

in such cases (which are crucial for continuous-alphabet
settings), all of the subsequent analysis remains unchanged
as long as P is chosen to satisfy EP [c(X)] < 	.

By definition, PX is i.i.d. conditioned on each a j being close
to its mean. We observe that μ is the probability (under Pn)
of the event in the indicator function of (84) occurring, and
we immediately obtain

lim
n→∞μ = 1 (85)

by the law of large numbers.
With the definition of PX in place, we recursively generate

the codewords in a similar manner to Section III:

Pr(x1) = PX (x1) (86)

Pr(x2|x1) = 1

μ2(x1)
PX(x2)�

{

d(x1, x2) > �
}

(87)

...

Pr(xm |xm−1
1 ) = 1

μm(x
m−1
1 )

PX (xm)

×�{

d(xi , xm) > � ∀i < m
}

, (88)

where each μm(·) is a normalizing constant depending on all
of the previous codewords. Note that in the case of continuous
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alphabets, each probability Pr(xi |, ·) should be replaced by
a conditional density function f (xi | ·).

We proceed by describing the analysis in two steps. To avoid
repetition, we omit certain parts of the analysis that are the
same as the constant-composition case.

2) Key Properties: Similarly to the constant-composition
case, we seek to arrive at an upper bound of the form

P̄(n)e
.≤

∑

x,y

PX (x)W n(y|x)

× min

{

1, (Mn − 1)
∑

x� : q (x�,y)≥q (x,y)
d(x�,x)≥�

PX (x�)
}

(89)

that holds under the rate condition (83). Towards establishing
this bound, we prove the following four important properties:
(a) For any x such that PX (x) > 0, we have under X � ∼ PX

that

− 1

n
log Pr

(

d(x, X �) ≤ �
) ≥ sup

r≥0,a(·)
−

∑

x

P(x)

× log
∑

x �
P(x �)ea(x �)−φa e−r(d(x,x �)−�) − δ, (90)

thus matching the rate condition in (83).
(b) The normalizing constants in (86)–(88) satisfy

μm(Xm−1
1 ) ≥ 1 − e−nδ almost surely under the

rate condition (83), for any choice of δ > 0.
(c) The marginal distribution of any given codeword (indexed

by m) satisfies Pr(xm)
.= PX(xm).

(d) The marginal joint distribution of any two code-
words (indexed by k and m) satisfies Pr(xk, xm)

.≤
PX (xk)PX(xm)�{d(xk, xm) > �}.

As we outline below, the first two properties are used as
stepping stones to obtaining the final two. Once the final two
properties are established, then a near-identical analysis to that
of (43)–(54) yields (89).

To establish the first property (90), we bound the probability
therein for fixed x:

Pr
(

d(x, X �) ≤ �
)

=
∑

x�
PX(x�)�

{

d(x, x �) ≤ �
}

(91)

≤
∑

x�
PX(x�)e−nr(d(x,x�)−�) (92)

≤
∑

x�
PX(x�)e−nr(d(x,x�)−�)en(a1(x�)−φ1+�) (93)

≤
∑

x�
Pn(x�)e−nr(d(x,x�)−�)en(a1(x�)−φ1+2�), (94)

where (92) uses Markov inequality with an arbitrary
parameter r > 0, (93) uses the fact that a1(x�) ≥ φ1 − � by
construction, and (94) holds for sufficiently large n because
μ → 1 in (84). Taking the logarithm and applying Gallager’s
single-letterization argument [1], we get

− log Pr
(

d(x, X �) ≤ �
)

≥ −
n

∑

k=1

log
∑

x �
P(x �)e−r(d(xk,x �)−�)ea1(x �)−φ1 − 2n�.

(95)

We now choose a2(x) = − log
∑

x � P(x �)er(d(x,x �)−�)
ea1(x �)−φ1 , which ensures that the leading term on the right-
hand side of (95) is equal to nan

2 (x). Hence, substituting the
definition φ2 = EP [a2(X)] and using a2(x) ≥ φ2 − � by
construction, we obtain

− 1

n
log Pr

(

d(x, X �) ≤ �
)

≥ −
∑

x

P(x) log
∑

x �
P(x �)e−r(d(x,x �)−�)ea1(x �)−φ1 − 3�.

(96)

Choosing � = δ
3 and optimizing r and a1(·), we obtain (90),

thus completing the proof of the first property above.
The second property above follows easily from the first:

Letting X � ∼ PX , we have μm(x
m−1
1 ) = Pr(d(xi , X �) > �,

∀i < m), and the union bound gives

1 − μm(x
m−1
1 ) ≤

∑

i<m

Pr
(

d(xi , X �) ≤ �
)

(97)

≤ enRn Pr
(

d(xi , X �) ≤ �
)

(98)

≤ e−nδ, (99)

where (99) follows from (90) and the rate condition (83).
Upper bounding the indicator functions in (86)–(88) by one

gives Pr(xm)
.≤ PX (xm), thus proving one direction of the

dot-equality in the third property above. The other direction
requires more effort, and is deferred to Appendix G.

For the fourth property above, we use (88) and the fact that
μm(xm−1

1 ) ≥ 1 − e−nδ to obtain

Pr(xk, xm)

=
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) Pr(xk |xk−1

1 )

× Pr(xm−1
k+1 |xk

1) Pr(xm |xm−1
1 ) (100)

≤
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) · PX (xk)

1 − e−nδ
· Pr(xm−1

k+1 |xk
1)

× PX (xm)�{d(xk, xm) > �}
1 − e−nδ

(101)

= 1

(1 − e−nδ)2
PX (xk)PX(xm)�{d(xk, xm) > �}. (102)

3) Upper-Bounding the Multi-Letter Upper Bound: Once
(89) is established, the steps in deriving (82) are standard.
Such an analysis requires two additional auxiliary costs, and
these are given by a3 and a4 in (84). In particular, we set
a3(x) = a(x) in (82) and

a4(x) = − log
∑

y

W (y|x)

×
(∑

x � P(x �)esq(x �,y)ea(x �)er(d(x,x �)−�)

esq(x,y)ea(x)

)ρ

. (103)

In fact, removing the constraint d(x, x�) > � from the
pairwise error probability term in (89) recovers the standard
random-coding union bound, which was already used in [10]
to establish the exponent in (82) without the term er(d(x,x �)−�).
Hence, the change in the analysis compared to [10] only



3462 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 6, JUNE 2019

amounts to an application of the inequality �{d(x, x�) ≥ �} ≤
enr(d(x,x�)−�), similarly to (91). Due to this similarity,
the details are omitted.

VI. OPTIMAL DISTANCE FUNCTIONS

In this section, we study optimal choices for the distance
function d(·, ·) in Theorem 1, thus characterizing how the
codewords should be separated in order to get the best possible
exponent for our construction. While some of the analysis in
this section includes the constant δ > 0, the best exponent will
always be obtained in the limit as δ → 0.

A. Reduction to the Csiszár-Körner Exponent - Negative
Mutual Information Distance

We show that when the distance function d(·, ·) is opti-
mized, and � is chosen appropriately, the exponent in
Theorem 1 recovers the exponent Eq(R, P,W ) in (23) [3].

Corollary 2. Let � > 0 be given, let q(·) be an arbitrary
type-dependent continuous decoding rule, and let R, P, and
d ∈ � be given. The exponent of the ensemble average
error probability of the generalized RGV construction with
sufficiently small δ, d(PX ˜X ) = −I (X; ˜X), � = −(R + 2δ),
sufficiently large n, and decoding metric q(·) over the DMC
W is at least as high as Eq(R, P,W ) − �.

Proof. We claim that the choices d(PX ˜X ) = −I (X; ˜X) and
� = −(R + 2δ) are valid for all R in the sense of satisfying
the rate condition (27). To see this, note that

min
PX ˜X : d(PX ˜X )≤�

PX =P
˜X =P

I (X; ˜X )

∣

∣

∣

∣d(PX ˜X )=−I (X;˜X)
�=−(R+2δ)

= min
PX ˜X : I (X;˜X)≥R+2δ

PX =P
˜X =P

I (X; ˜X) (104)

≥ R + 2δ, (105)

as required. Now, under the same choices, we have

ERGV(R, P,W, q, d,�)
∣

∣

∣

d(PX ˜X )=−I (X;˜X), �=−(R+2δ)

= min
V ∈TI,δ

D(VY |X�W |P) + ∣

∣I( ˜X ; Y, X)− R
∣

∣+, (106)

where

TI,δ �
{ VX ˜XY ∈ P(X × X × Y) : VX = V

˜X = P,
q(V

˜XY ) ≥ q(VXY ), I( ˜X ; X) ≤ R + 3δ

}

.

(107)

The result follows by taking δ → 0 and using the continuity
of Eq(R, P,W ) in R [3]. �

The following proposition reveals that the above choice of
(d,�) is the one that maximizes the general exponent given
in Theorem 1.

Proposition 1. Under the setup of Theorem 1 with

R ≤ min
PX ˜X : PX =P

˜X =P
d(PX ˜X )≤�

I (X; ˜X)− 2δ, (108)

we have

ERGV(R, P,W, q, d,�)

≤ ERGV(R, P,W, q, d,�)
∣

∣

∣

d=−I (X;˜X), �=−(R+2δ)
. (109)

Proof. From (108), we see that among all P �
X ˜X

such that
P �

X = P �̃
X

= P , the condition d(P �
X ˜X
) ≤ � implies

R + 2δ ≤ IP � (X; ˜X). The contrapositive statement is that
among all P �

X ˜X
such that P �

X = P �̃
X

= P , the condition

R + 2δ > IP �(X; ˜X) implies d(P �
X ˜X
) > �. As a result, when

(108) holds, Td,q,P(�) defined in (26) satisfies

Td,q,P(�) ⊇ TI,δ , (110)

where TI,δ is defined in (107). Therefore,

ERGV(R, P,W, q, d,�)

= min
V ∈Td,q,P (�)

D(VY |X�W |P) + ∣

∣I( ˜X ; Y, X) − R
∣

∣+ (111)

≤ min
V ∈TI,δ

D(VY |X�W |P) + ∣

∣I( ˜X ; Y, X) − R
∣

∣+, (112)

so the exponent is upper bounded by that corresponding to
d(PX ˜X ) = −I (X; ˜X) and � = −(R + 2δ). �

We note that the choice d(PX ˜X ) = −I (X; ˜X) is universally
optimal in maximizing the achievable exponent in Theorem 1
(subject to (27)), in the sense that it has no dependence on the
channel, decoding rule, or input distribution. This provides an
interesting analogy with the decoding rule q(PXY ) = I (X; Y ),
which is known to be universally optimal for achieving the
regular random-coding exponent; however, it remains an open
problem as to whether such a choice also attains the expur-
gated exponent [3].

B. A Non-Universal Optimal Distance Function

In this subsection, we show that the non-universal distance
function d(PX X̃ ) = βR,W,q(PX ˜X ) also achieves the exponent
of Csiszár and Körner, where

βR,W,q(PX ˜X ) � min
VX ˜XY ∈T �(PX ˜X )

	(VX X̃Y ), (113)

with2

	(VX X̃Y ) � D(VY |X�W |VX )+
∣

∣I( ˜X ; Y, X) − R
∣

∣+, (114)

and

T �(PX ˜X ) �
{

VX ˜XY ∈ P(X × X × Y) :
VX ˜X = PX ˜X , q(V

˜XY ) ≥ q(VXY )
}

. (115)

We first provide a corollary characterizing the exponent of
Theorem 1 with d(·) = βR,W,q(·), and then prove its equiva-
lence to (23).

Corollary 3. If the pair (R,�) satisfies the condition

R ≤ min
PX ˜X : PX =P

˜X =P
βR,W,q (PX ˜X )≤�

I (X; ˜X)− 2δ, (116)

2The dependence of 	 on (R,W, q) is left implicit to lighten notation.
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then the ensemble average error probability P̄(n)e of the
RGV codebook construction with parameters (n, R, P,
βR,W,q ,�, δ) using the continuous type-dependent decoding
rule q(·) over the channel W satisfies

P̄(n)e
.≤ e−n�. (117)

Proof. First observe that the minimization in ERGV(R, P,
W, q, d,�) (see (25)) can be done in two stages: Minimize
first over PX ˜X , and then over VX ˜XY that are consistent with
PX ˜X . By doing so, we obtain

ERGV(R, P,W, q, d,�)

= min
PX ˜X : PX =P

˜X =P
d(PX ˜X )≥�

min
VX ˜XY ∈T �(PX ˜X )

D(VY |X�W |P)

+ ∣

∣I( ˜X ; Y, X)− R
∣

∣+, (118)

where T �(PX ˜X ) is defined in (115). From the definition of
βR,W,q(PX ˜X ) (113), we can rewrite (118) as

ERGV(R, P,W, q, d,�) = min
PX ˜X : PX =P

˜X =P
d(PX ˜X )≥�

βR,W,q(PX ˜X ).

(119)

Hence, by the choice d(·) = βR,W,q(·) we obtain

ERGV(R, P,W, q, d,�) = min
PX ˜X : PX =P

˜X =P
d(PX ˜X )≥�

d(PX ˜X ) (120)

≥ �. (121)

Combined with (27), this yields that for a pair (R,�) that
satisfies (116), we have P̄(n)e

.≤ e−n�. �
Note that while the preceding proof gives an exponent of �,

one cannot make � arbitrarily large, because past a certain
point the condition (116) will never be satisfied.

The following proposition shows that error exponents corre-
sponding to Corollaries 2 and 3 are identical, and hence, both
are optimal when (27) holds.

Proposition 2. For any P ∈ P(X ), the achievable rate-
exponent pairs (R, E) resulting from Theorem 1 (i.e., taking
the union over all δ > 0 and � > 0) are identical for the
choices d(PX ˜X ) = −I (X; ˜X) and d(PX ˜X ) = βR,W,q(PX ˜X ).

Proof. Consider the exponent in Corollary 2 for d(PX ˜X ) =
−I (X; ˜X). For fixed R, the highest possible exponent E is
obtained by choosing � such that (27) holds with equality,
and then taking δ → 0 to obtain the achievable pair

(R, E)

=
(

R, min
VX ˜XY ∈TI

D(VY |X�W |P) + |I ( ˜X ; Y, X)− R|+
)

,

(122)

where

TI �
{

VX ˜XY ∈ P(X × X × Y) :
VX = V

˜X = P, q(P
˜X ,Y ) ≥ q(PX,Y ), I (X; ˜X ) ≤ R

}

. (123)

Next, Corollary 3 states that � is an achievable exponent
at rate R for d(PX ˜X ) = βR,W,q(PX ˜X ) provided that

R < min
PX ˜X : PX =P

˜X =P,βR,W,q (PX ˜X )≤�
I (X; ˜X). (124)

The condition βR,W,q(PX ˜X ) ≤ � is equivalent to:

βR,W,q(PX ˜X ) ≤ �

⇐⇒ min
VX ˜XY : q(P

˜X,Y )≥q(PX,Y ),VX ˜X=PX ˜X

	(VX ˜XY ) ≤ � (125)

⇐⇒ 	(VX ˜XY ) ≤ � for some VX ˜XY

s.t. q(P
˜X ,Y ) ≥ q(PX,Y ), VX ˜X = PX ˜X . (126)

Using this, we can rewrite the right-hand side of (124) as

min
PX ˜X : PX =P

˜X =P,βR,W,q (PX ˜X )≤�
I (X; ˜X)

= min
PX ˜X : PX =P

˜X =P,

	(VX ˜XY )≤� for some VX ˜XY : q(P
˜X,Y )≥q(PX,Y ),

VX ˜X =PX ˜X

I (X; ˜X) (127)

= min
PX ˜X : PX =P

˜X =P
min

VX ˜XY : q(P
˜X,Y )≥q(PX,Y )

{

IP (X; ˜X) 	(VX ˜XY ) ≤ � and VX ˜X = PX ˜X

∞ otherwise
(128)

= min
VX ˜XY : q(P

˜X,Y )≥q(PX,Y ),

	(VX ˜XY )≤�,VX=V
˜X =P

IV (X; ˜X), (129)

where the last step uses the fact that IP(X; ˜X) = IV (X; ˜X)
whenever VX ˜X = PX ˜X . From (129), it follows that (124) can
be written as

R < min
VX ˜XY ∈V :	(VX ˜XY )≤�

IV (X; ˜X), (130)

where V = {VX ˜XY : q(P
˜X ,Y ) ≥ q(PX,Y ), VX = V

˜X = P}.
We claim that (130) is equivalent to

� < min
VX ˜XY ∈V : IV (X;˜X)≤R

	(VX ˜XY ). (131)

To see this, we show that (130) implies (131), and that the
complement of (130) implies the complement of (131):

• First suppose that (130) holds. This means that within V
we have 	(VX ˜XY ) ≤ � �⇒ R < IV (X; ˜X), and the
contrapositive statement is that within V we have R ≥
IV (X; ˜X) �⇒ 	(VX ˜XY ) > �, which implies (131).

• Now suppose that (130) fails. This means that there exists
V ∈ V such that 	(VX ˜XY ) ≤ � and R ≥ IV (X; ˜X),
which implies that (131) fails.

Finally, we note that the right-hand side of (131) is pre-
cisely ERGV(R, P,W, q, d,�)|d=−I (X;˜X ) (see (25)), and we
recall that � equals the achievable exponent for d(PX ˜X ) =
βR,W,q(PX ˜X ). Thus, (131) states that given R, this expo-
nent can be made arbitrarily close to Eq(R, P,W ) in (23).
Since the latter is optimal by Proposition 1, the proof is
complete. �
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C. Bhattacharyya and Chernoff Distances

Here we show that an additive distance function with
per-letter distance

ds(x, x �) = − log
∑

y

W (y|x)
(

eq(x �,y)

eq(x,y)

)s

, (132)

for suitably-chosen s > 0 also recovers the maximum of
the random coding and expurgated exponents. We call this
the Chernoff distance, because it is closely related to the
Chernoff bound for bounding a probability of the event of
the form {q (X �, y) ≥ q(x, y)}. In the case of ML decoding
q(x, y) = log W (y|x), we choose s = 1

2 , and hence ds reduces
to the Bhattacharrya distance, which is symmetric. For general
decoding metrics, we may require s �= 1

2 , and thus ds is
not symmetric; however, the RGV exponent is still achievable
according to Corollary 1.

We note that since we are considering bounded metrics,
the distance ds(x, x �) is also bounded, in accordance with
Definition 1. However, this may rule out certain choices such
as q(x, y) = log W (y|x) for channels with zero-probability
transitions, in which we wish to assign the value q(x, y) =
−∞ when W (y|x) = 0.

We will show that the additive distance ds recovers both
the random coding and expurgated exponents for mismatched
decoding [3], [4]. This implies the near-optimality of ds , in the
sense that no examples are known for which Eq(R, P,W ) is
strictly higher than the maximum of the random-coding and
expurgated exponents.

Recovering the (ensemble-tight) random coding exponent
is immediate: By setting � equal its maximum possible
value, the rate condition in (27) becomes trivial, and we can
lower bound the exponent in (25) by dropping the constraint
d(PX ˜X ) ≥ � and writing I ( ˜X ; Y, X) ≥ I ( ˜X ; Y ). The
resulting exponent matches that of [2] and [10]. Alternatively,
setting r = 0 in (82) gives the same exponent in the dual
form.

Recovering the expurgated exponent is more difficult; we do
this using the dual form in Theorem 2. Setting ρ = 1 in (82),
and letting s coincide with the choice in (132), we obtain

ERGV(R, P,W, q, d,�)

≥ −
∑

x

P(x) log
∑

x �
P(x �)

∑

y

W (y|x)

×
(eq(x �,y)

eq(x,y)

)s ea(x �)

ea(x)
er(d(x,x �)−�) − R (133)

= −
∑

x

P(x) log
∑

x �
P(x �)e−ds(x,x �) ea(x �)

ea(x)
er(d(x,x �)−�) − R.

(134)

Setting d = ds and r = ρ�
1+ρ� for some ρ� ≥ 0 gives

ERGV(R, P,W, q, d,�)

≥ −
∑

x

P(x) log
∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)
+�

ρ�

1 + ρ� − R.

(135)

Then, choosing

� = −(1 + ρ�)
(

∑

x

P(x) log

[

∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)

]

+ R + 2δ

)

, (136)

we obtain from (135) that

ERGV(R, P,W, q, d,�)

≥ −
∑

x

P(x) log
∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)

− ρ�
(

∑

x

P(x) log
∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)
+ R + 2δ

)

− R

(137)

= −(1 + ρ�)
(

∑

x

P(x) log
∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)

)

− (1 + ρ� + 2δρ�)R. (138)

Upon taking δ → 0 and optimizing over ρ� ≥ 0, s ≥ 0,
and a(·), this exponent is identical to the dual form for
the mismatched decoding expurgated exponent given in [4],
which is known to be equivalent to the primal form given
in [3].

We also need to check that the choice of � in (136)
complies with the rate condition in (83). We choose the
same a(·) as in the exponent, but a value different r (note
that the two need not be the same). We simplify the condition
as follows:

R ≤ −
∑

x

P(x) log
∑

x �
P(x �)ea(x �)−φa e−r(ds(x,x �)−�) − 2δ

(139)

= −
∑

x

P(x) log
∑

x �
P(x �)ea(x �)−φa e−rds (x,x �) − r�− 2δ

(140)

= −
∑

x

P(x) log
∑

x �
P(x �)ea(x �)−φa e−rds (x,x �)

+ r(1 + ρ�)
(

∑

x

P(x) log

[

∑

x �
P(x �)e− ds (x,x �)

1+ρ� ea(x �)

ea(x)

]

+ R + 2δ

)

− 2δ, (141)

where we have substituted (136).
By setting r = 1

1+ρ� and noting that − ∑

x P(x) log
∑

x � P(x �)ea(x �)−φa e−rds (x,x �) is identical to − ∑

x P(x) log
∑

x � P(x �) ea(x �)
ea(x) e−rds (x,x �) (by expanding the logarithms and

using φa = ∑

x P(x)a(x)), we observe that (141) reduces
to R ≤ R, which is trivially satisfied.

VII. DISCUSSION AND CONCLUSION

In this paper, we introduced a sequential random scheme
based on randomizing a generalized form of Gilbert-
Varshamov codes with a general distance function. This
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ensemble ensures that the codewords are sufficiently separated
in the input space, and simultaneously achieves both the
random coding and expurgated exponents. We proved that the
RGV exponent is ensemble-tight for any additive decoding
metric, and to our knowledge, this is the first such result
for any construction achieving the expurgated exponent. In
addition, we provided dual-domain expressions, along with
a direct derivation that extends beyond the finite-alphabet
setting, and we presented choices of the distance function that
attain the best possible exponent.

APPENDIX

A. Proof of Lemma 2

In the following, products of the form
∏

i �={k,m} are a
shorthand for

∏

i∈{1,...,m}\{k,m}. In addition, for the special case
of m = k + 1, any summations over xm−1

k+1 are void, and
any terms of the form Pr(xm−1

k+1 |xk
1) should be omitted (i.e.,

replaced by 1)
Since by assumption k < m, we have

Pr(xk, xm)

=
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) Pr(xk |xk−1

1 )

× Pr(xm−1
k+1 |xk

1) Pr(xm |xm−1
1 ) (142)

=
∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) Pr(xm−1

k+1 |xk
1)

×
∏k−1

i=1 �{d(xk, x i ) > �}
|T (Pn, xk−1

1 )|

∏m−1
i=1 �{d(xm, xi ) > �}

|T (Pn, xm−1
1 )|

(143)

≥ �{d(xk, xm) > �}
|T (Pn)|2

∑

xk−1
1 ,xm−1

k+1

Pr(xk−1
1 ) Pr(xm−1

k+1 |xk
1)

×
k−1
∏

i=1

�{d(xk, xi ) > �}
∏

i /∈{k,m}
�{d(xm , xi ) > �}

(144)

= �{d(xk, xm) > �}
|T (Pn)|2

∑

xk−1
1 ,xm−1

k+1

∏

i /∈{k,m}
Pr(xi |xi−1

1 )

× �{d(xk, xi ) > �}�{d(xm, x i ) > �} (145)

where (143) follows by noting that the two fractions
appearing are precisely Pr(xk |xk−1

1 ) and Pr(xm |xm−1
1 ),

(144) follows from Lemma 1, and (145) writes Pr(xk−1
1 )

Pr(xm−1
k+1 |xk

1) recursively, as well as extending
∏k−1

i=1 �{d(xk, xi ) > �} to
∏

i /∈{k,m} �{d(xk, x i ) > �} since the term
Pr(xk−1

1 ) Pr(xm−1
k+1 |xk

1) is zero whenever d(xk, xi ) ≤ � for
some k < i < m.

We now apply a recursive procedure to the summation
in (145). Letting ψi (xi , xi−1

1 , xk, xm) denote the argument to

the product therein, we have
∑

xk−1
1 ,xm−1

k+1

∏

i /∈{k,m}
ψi (xi , xi−1

1 , xk, xm)

=
(

∑

xk−1
1 ,xm−2

k+1

∏

i /∈{k,m,m−1}
ψi (xi , xi−1

1 , xk, xm)

)

×
∑

xm−1

ψm−1(xm−1, xm−2
1 , xk, xm). (146)

The summation over xm−1 can be expanded as follows:
∑

xm−1

ψm−1(xm−1, xm−2
1 , xk, xm)

=
∑

xm−1

�{xm−1 ∈ T (Pn, xm−2
1 )}

|T (Pn, xm−2
1 )| �{d(xk, xm−1) > �}

× �{d(xm , xm−1) > �} (147)

= |T (Pn, xm−2
1 , xk, xm)|

|T (Pn, xm−2
1 )| (148)

≥ |T (Pn, xm−2
1 )| − 2 volx(�)

|T (Pn, xm−2
1 )| (149)

= 1 − 2 volx(�)

|T (Pn, xk−2
1 )| (150)

≥ 1 − 2e−n(Rn+δ)

1 − e−nδ
(151)

= 1 − 2δne−nRn (152)

where (148) follows since the three indicator functions
are simultaneously equal to one if and only if xm−1 ∈
T (Pn, xm−2

1 , xk, xm), (149) follows since the only sequences
that can be in T (Pn, xm−2

1 ) but not T (Pn, xm−2
1 , xk, xm) are

those in the d-balls centered as xk and xm (recall also that volx
does not depend on x), and (151) follows from the volume
upper bound and the set cardinality lower bound Lemma 1,
and (152) applies the definition of δn in (20).

Applying the above procedure recursively to the indices
m − 2, m − 3, and so on in (146) (skipping index k), and
substituting into (145), we obtain

Pr(xk, xm) ≥ �{d(xk, xm) > �}
|T (Pn)|2

(

1 − 2δn

enRn

)enRn

(153)

≥ �{d(xk, xm) > �}
|T (Pn)|2 (1 − 4δ2

n)e
−2δn (154)

where (153) also applies m − 2 ≤ enRn in the exponent,
and (154) follows from the standard inequality
(

1 − α
N

)N ≥ e−α(1 − α2

N

)

. This establishes the desired lower
bound.

The upper bound in (21) simply follows by applying
Lemma 1 to (143), and upper bounding the indicator functions
by one.

B. Proof of Lemma 3

Recall the abbreviation in (62) (which we use with k
in place of m). Recalling the assumption i < j < k,
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we have

Pr(xi , x j , xk)

=
∑

xi−1
1 ,x j−1

i+1 ,x
k−1
j+1

Pr(xi−1
1 ) Pr(xi |xi−1

1 ) Pr(x j−1
i+1 |xi

1)

× Pr(x j |x j−1
1 ) Pr(xk−1

j+1|x j
1) Pr(xk |xk−1

1 ) (155)

=
∑

xi−1
1 ,x j−1

i+1 ,x
k−1
j+1

Pr(xi−1
1 ) Pr(x j−1

i+1 |xi
1) Pr(xk−1

j+1|x j
1)

×
∏i−1

r=1 �{d(xi , xr ) > �}
|T (Pn, xi−1

1 )|

∏ j−1
s=1 �{d(x j , xs) > �}

|T (Pn, x j−1
1 )|

×
∏m−1

t=1 �{d(xm, xt ) > �}
|T (Pn, xk−1

1 )| (156)

≤ Id,�(xi , x j , xk)

(1 − e−nδ)3|T (Pn)|3
∑

xi−1
1 ,x j−1

i+1 ,x
k−1
j+1

Pr(xi−1
1 )

× Pr(x j−1
i+1 |xi

1) Pr(xk−1
j+1|x j

1) (157)

= Id,�(xi , x j , xk)

(1 − e−nδ)3|T (Pn)|3
∑

xi−1
1

Pr(xi−1
1 )

×
∑

x j−1
i+1

Pr(x j−1
i+1 |xi

1)
∑

xk−1
j+1

Pr(xk−1
j+1|x j

1) (158)

= Id,�(xi , x j , xk)

(1 − e−nδ)3|T (Pn)|3 , (159)

where (155) substitutes the conditional codeword distributions
given all previous codewords, and (157) uses Lemma 1.

C. Proof of Lemma 4

Let π be a permutation of the indices [1, . . . , n], and
let π(x) be the outcome of applying the permutation π to
the sequence x. By the definition of the generalized RGV
construction (in particular, the fact that the codewords are
drawn uniformly and d is type-dependent), we have

Pr (X1 = x1, X2 = x2, . . . , Xm = xm)

= Pr (X1 = π(x1), X2 = π(x2), . . . , Xm = π(xm)) .

(160)

We now consider summing both sides over all sequences
(x1, . . . , xm−1) that are admissible in the sense of meeting
the requirement d(xi , x j ) > � for all i, j ∈ {1, ...,m}.
Clearly such a summation yields Pr (Xm = xm) on the left-
hand side. Moreover, for each such (x1, . . . , xm−1), the type-
dependent nature of d implies that (π(x1), . . . , π(xm−1)) and
(π−1(x1), . . . , π

−1(xm−1)) are also admissible. As a result,
we are also summing the right-hand side over all admissible
sequences, yielding

Pr (Xm = xm) = Pr (Xm = π(xm)) , (161)

which implies that Xm is distributed uniformly over T (Pn).

D. Proof of Lemma 5

The RGV exponent, defined in (25), is a minimization over
joint distributions VX ˜XY within the constraint set Td,q,P(�)
given in (26).

Let V ∗
X ˜XY

denote the minimizer subject to Td,q,P(�), and
let V ∗

X ˜XY,n
denote the minimizer subject to Td,q,Pn(�). Since

the space of probability distributions is compact, any infinite
subsequence of V ∗

X ˜XY,n
must have a further subsequence

converging to some V ∗
X ˜XY,∞. Moreover, since d and q are

continuous and V ∗
X ˜XY,n

∈ Td,q,Pn(�) with Pn → P , we must
have V ∗

X ˜XY,∞ ∈ Td,q,P(�), from which (57) follows.

E. Proof of Lemma 6

In this appendix, we make use of the following notation,
also used in Section VI-B:

	(VX X̃Y ) � D(VY |X�W |VX )+
∣

∣I( ˜X ; Y, X) − R
∣

∣+. (162)

We observe that the exponent on the right-hand side of (79)
can be rewritten as

min
VX ˜X ∈Pn(X 2) :
VX =V

˜X =Pn,
d(VX ˜X )≥�

min
VY |X ˜X ∈Pn(Y |VX ˜X ) :

q(Pn×VY |˜X )−q(Pn×VY |X )≥0

	(VX ˜X × VY |X ˜X ),

(163)

where the notation VY |X ˜X ∈ Pn(Y|VX ˜X ) means that VX ˜X ×
VY |X ˜X is a joint empirical distribution for sequences of
length n. Throughout the appendix, we will make use of the
fact the minimizers must be such that

W (y|x) = 0 �⇒ VY |X (y|x) = 0, (164)

since otherwise the KL divergence in (162) would be infinite.
Observe that within the space of joint distributions
satisfying (164), the function 	(·) is continuous.

We first show that the inner minimization can be approx-
imated by a minimization over VY |X ˜X ∈ P(Y|X 2), and then
we show that the outer minimization can be approximated by
a minimization over VX ˜X ∈ P(X 2).

Inner minimization. Define 
(VX ˜X × VY |X ˜X ) = q(Pn ×
VY |˜X )− q(Pn × VY |X ), so that the constraint in (163) is given
by 
(VX ˜X × VY |X ˜X ) ≥ 0. For any VX ˜X ∈ Pn(X 2), we need
to show that the inner minimization in (163) can be expanded
from Pn(Y|VX ˜X ) to P(Y|X 2). Specifically, we wish to show
that for any � > 0, it holds for sufficiently large n that

min
VY |X ˜X ∈Pn(Y |VX ˜X ) :
(VX ˜X×VY |X ˜X )≥0

	(VX ˜X × VY |X ˜X )

≤ min
VY |X ˜X ∈P(Y |X 2) :
(VX ˜X×VY |X ˜X )≥0

	(VX ˜X × VY |X ˜X )+ �.

(165)

Since we are considering additive decoding metrics,
i.e., q(PXY ) = EP [q(X,Y )], we have


(VX ˜X × VY |X ˜X )

=
∑

x,x,y

VX ˜X (x, x)VY |X ˜X (y|x, x) · [q(x, y)− q(x, y)].

(166)

To prove (165), fix any ˜VY |X ˜X ∈ P(Y|X 2) with 
(VX ˜X ×
˜VY |X ˜X ) ≥ 0, and let V (n)

Y |X ˜X
be the quantized version of ˜VY |X ˜X
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that rounds up for the highest values of q(x, y)−q(x, y), and
rounds down for the smallest values:

V (n)
Y |X ˜X

(y|x, x)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
nVX ˜X (x,x)

�n · VX ˜X (x, x) · ˜VY |X ˜X (y|x, x)�
if q(x, y)− q(x, y) > cx x

1
nVX ˜X (x,x)

�n · VX ˜X (x, x) · ˜VY |X ˜X (y|x, x)�
if q(x, y)− q(x, y) < cx x ,

(167)

where for each (x, x), we choose cx x (as well as rounding the
entries with q(x, y) − q(x, y) = cx x up or down as needed)
in such a way that the entries of V (n)

Y |X ˜X
(y|x, x) sum to one.

By this construction and the fact that 
(VX ˜X × VY |X ˜X ) is
a positive linear combination of the values q(x, y) − q(x, y)
(cf., (166)), we have


(VX ˜X × V (n)
Y |X ˜X

) ≥ 
(VX ˜X × ˜VY |X ˜X ) (168)

and
∑

x ,̃x,y

∣

∣VX ˜X (x, x̃)V (n)
Y |X ˜X

(y|x, x̃)− VX ˜X (x, x̃) ˜VY |X ˜X (y|x, x̃)
∣

∣

≤ |X |2|Y|
n

. (169)

In particular, (168) immediately implies that the required
constraint 
(VX ˜X × V (n)

Y |X ˜X
) ≥ 0 is satisfied. Moreover, (169)

implies that VX ˜X × V (n)
Y |X ˜X

is O
( 1

n

)

-close to VX ˜X × ˜VY |X ˜X

(in the �1 sense), and hence 	(VX ˜X × ˜VY |X ˜X ) − 	(VX ˜X ×
V (n)

Y |X ˜X
) → 0 by the continuity of 	(·). This proves the part

of the approximation of the inner minimization, i.e., (165).
Outer minimization. Having proved (165), the double

minimization (163) is upper bounded by the following double
minimization:

min
VX ˜X ∈Pn (X 2) :
VX =V

˜X =Pn ,
d(VX ˜X )≥�

min
VY |X ˜X ∈P(Y |X 2) :

q(Pn×VY |˜X )−q(Pn×VY |X )≥0

	(VX ˜X × VY |X ˜X ).

(170)

Consider the expression in (170) with Pn(X 2) replaced by
P(X 2) and Pn replaced by P:

min
VX ˜X ∈P(X 2) :
VX =V

˜X =P,
d(VX ˜X )≥�

min
VY |X ˜X ∈P(Y |X 2) :

q(P×VY |˜X )−q(P×VY |X )≥0

	(VX ˜X × VY |X ˜X ). (171)

Given the minimizer V ∗
X ˜X

∈ P(X 2) with V ∗
X = V ∗̃

X
= P ,

let V ∗
X ˜X,n

be the closest joint type (e.g., in the �∞ sense)
that satisfies V ∗

X = V ∗̃
X

= Pn . It follows that V ∗
X ˜X,n

(x, x) −
V ∗

X ˜X
(x, x) → 0.

Let V ∗
Y |X ˜X

denote the minimizer in (171), and define

V max
Y |X ˜X,n = arg max

VY |X ˜X ∈Pn(Y |X 2)


(VX ˜X,n × VY |X ˜X ). (172)

We claim that there exists a vanishing sequence �n such that

(1 − �n)
(V
∗
X ˜X,n × V ∗

Y |X ˜X )+ �n
(VX ˜X,n × V max
Y |X ˜X ,n) ≥ 0.

(173)

To see this, note that since 
(V ∗
X ˜X

×V ∗
Y |X ˜X

) ≥ 0 by definition,
we only need the second term in (173) to be large enough to
overcome the rounding from V ∗

X ˜X
to V ∗

X ˜X ,n
. If 
(VX ˜X,n ×

V max
Y |X ˜X,n

) > 0, then this is possible by letting �n vanish suffi-
ciently slowly. On the other hand, 
(VX ˜X,n × V max

Y |X ˜X ,n
) < 0

is impossible, since one could swap the roles of X and ˜X
in (172) to produce a positive quantity. The only remaining
case is that 
(VX ˜X,n × VY |X ˜X ) = 0 for all VY |X ˜X , in which
case (173) is trivial.

Using (173) and the continuity of 	 (subject to (164), which
we have established to always hold), we deduce the following
for any � > 0 and sufficiently large n:

min
VX ˜X ∈P(X 2) :
VX =V

˜X =P,
d(VX ˜X )≥�

min
VY |X ˜X ∈P(Y |X 2) :

q(P×VY |˜X )−q(P×VY |X )≥0

	(VX ˜X × VY |X ˜X ) (174)

= 	(V ∗
X ˜X × V ∗

Y |X ˜X ) (175)

≥ 	(V ∗
X ˜X ,n × V ∗

Y |X ˜X )− � (176)

≥ 	
(

V ∗
X ˜X ,n ×

[

(1 − �n)V
∗
Y |X ˜X + �n V max

Y |X ˜X ,n

])

− 2� (177)

≥ min
VY |X ˜X ∈Pn(Y |X 2) :

q(Pn×VY |˜X )−q(Pn×VY |X )≥0

	
(

V ∗
X ˜X,n × VY |X ˜X

)

− 2� (178)

≥ min
VX ˜X ∈P(X 2) :
VX =V

˜X =Pn,
d(VX ˜X )≥�−�

min
VY |X ˜X ∈Pn(Y |X 2) :

q(Pn×VY |˜X )−q(Pn×VY |X )≥0

	
(

VX ˜X × VY |X ˜X

)

− 2� (179)

where both (176) and (177) follow from the continuity of
	(·), (178) follows since (1 − �n)V ∗

Y |X ˜X
+ �n V max

Y |X ˜X,n
belongs

to the constraint set in the minimization due to (173), and
(179) follows since d(V ∗

X ˜X
) ≥ � �⇒ d(V ∗

X ˜X,n
) ≥ �− � by

the continuity of d .
Since � is arbitrary in the preceding steps, we may

replace � by �+ � in both (174) and (179). Upon doing so,
we obtain the RGV exponent with input distribution P and
parameter � + � on the left-hand side, while recovering the
expression (170) from the first step above on the right-hand
side. This completes the proof of Lemma 6.

F. Primal-Dual Equivalence

The primal-dual equivalence stated in Theorem 2 follows
in a near-identical manner to the mismatched random coding
exponent [4] (and to a lesser extent, the mismatched expur-
gated exponent [4]), so we omit most of the details. We first
consider the exponent (82), and then the rate condition (83).

Exponent expression. The proof of equivalence for the
exponent consists of three steps, interleaved with applications
of the minimax theorem to swap the order of the primal and
dual optimization variables:

1) Let PXY be fixed, and consider the optimization problem

min
VX ˜XY : VXY =PXY ,P˜X =P,

q(V
˜XY )≥q(PXY ),d(PX ˜X )≥�

D
(

VX ˜XY �P × PXY
)

, (180)

where P × PXY denotes the joint distribution
P(x)P(x̃)PY |X (y|x). This minimization arises from fix-
ing the (X,Y ) marginals in (25) and noting that all terms
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other than the mutual information I ( ˜X ; X,Y ) are con-
stant. The mutual information is equivalent to the objec-
tive function in (180), due to the equality constraints.
Applying Lagrange duality in the same way as the
random coding setting [10] (see also [26, Appendix E]),
we find that (180) is equivalent to3

sup
s≥0,r≥0,a(·)

−
∑

x,y

PXY (x, y)

× log

∑

x � Q(x �)esq(x �,y)ea(x �)er(d(x,x �)−�)

esq(x,y)ea(x)
, (181)

where s, r , and a(·) are Lagrange multipliers
corresponding to the metric constraint, distance
constraint, and ˜X -marginal constraint.

2) Let gs,r,a(x, y) = − log
∑

x � Q(x �)esq(x �,y)ea(x �)er(d(x,x �)−�)
esq(x,y)ea(x)

be the function being averaged in (181). Based on the
definition in (25), the previous step, and the minimax
theorem, the RGV exponent is given by

sup
s≥0,r≥0,a(·)

min
VXY : PX =P

D(VXY �P × W )

+ ∣

∣EV [gs,r,a(X,Y )] − R
∣

∣+. (182)

By applying [z]+ = maxρ∈[0,1] ρz along with the
minimax theorem, we find that this is equivalent to

sup
ρ∈[0,1],s≥0,r≥0,a(·)

min
VXY : PX =P

D(VXY �P × W )

+ ρ
(

EV [gs,r,a(X,Y )] − R
)

. (183)

3) A minimization problem of the form (183) was already
considered in [10] (with a different choice of gs,r,a), and
it was shown that the minimization is equivalent to the
expression

−
∑

x

Q(x) log
∑

y

W (y|x)eρgs,r,a (x,y). (184)

Substituting the definition of gs,r,a completes the proof.

Rate condition expression. The primal-dual equivalence
for the rate condition can be proved using similar steps to
those above; here we briefly discuss another way that it can
be understood.

The primal expression (27) is of the same form as the
so-called LM rate for mismatched decoding [3], [21], [22],
with ˜X playing the role of Y , and d playing the role of the
decoding metric. Accordingly, the primal-dual equivalence
is essentially a special case of that of the LM rate, which
is well-established in the mismatched decoding literature
[8], [26], [27].

G. Lower Bound for Marginal Distribution in
Cost-Constrained Coding

Here we show that in the cost-constrained coding setting of
Section F, each Pr(xm) is lower bounded by PX (xm) times a
constant tending to one. Recall that the codeword distribution

3We have eq(x,y) in place of q(x, y) in [10] because we are considering
additive (rather than multiplicative) decoding rules.

is of the form (88) with 1 − e−nδ ≤ μm(x
m−1
1 ) ≤ 1 (see the

properties following (90)). We have

Pr(xm)

=
∑

xm−1
1

Pr(xm−1
1 ) Pr(xm |xm−1

1 ) (185)

=
∑

xm−1
1

Pr(xm−1
1 )

PX(xm)

μm(xm−1
1 )

�{d(xi , xm) > �, ∀i < m}

(186)

≥ PX (xm)
∑

xm−1
1

Pr(xm−1
1 )�{d(xi , xm) > �, ∀i < m} (187)

≥ PX (xm)
∑

xm−1
1

m−1
∏

i=1

(

Pr(xi |xi−1
1 )�{d(xi , xm) > �}), (188)

where (186) substitutes (88), (187) uses the fact that
μm(x

m−1
1 ) ≤ 1, and (188) is an expansion of Pr(xm−1

1 ).
We now unravel the product one term at a time. We start

by writing

∑

xm−1
1

m−1
∏

i=1

(

Pr(xi |xi−1
1 )�{d(xi , xm) > �})

=
∑

xm−2
1

m−2
∏

i=1

(

Pr(xi |xi−1
1 )�{d(xi , xm) > �})

×
∑

xm−1

Pr(xm−1|xm−2
1 )�{d(xm−1, xm) > �}. (189)

Henceforth, let D(·) denote the set of possible codewords that
are at a distance exceeding � from all codewords listed in the
brackets. Substituting the conditional codeword distribution for
codeword m − 1 gives

∑

xm−1

Pr(xm−1|xm−2
1 )�{d(xm−1, xm) > �}

= 1

μm−1(x
m−2
1 )

∑

xm−1

PX (xm−1)�{xm−1 ∈ D(xm−2
1 , xm)}

(190)

= Pr(X � ∈ D(xm−2
1 , xm))

Pr(X � ∈ D(xm−2
1 ))

, (191)

where X � ∼ PX , and the denominator in (191) follows since
μm−1(xm−2

1 ) = Pr(X � ∈ D(xm−2
1 )) by definition.

Continuing, we write

Pr(X � ∈ D(xm−2
1 , xm))

Pr(X � ∈ D(xm−2
1 ))

≥ Pr(X � ∈ D(xm−2
1 ))− Pr(d(X �, xm) ≤ �)

Pr(X � ∈ D(xm−2
1 ))

(192)

= 1 − Pr(d(X �, xm) ≤ �)

Pr(X � ∈ D(xm−2
1 ))

(193)

≥ 1 − Pr(d(X �, xm) ≤ �)

1 − e−nδ
(194)

≥ 1 − e−n(Rn+δ)

1 − e−nδ
(195)

= 1 − δne−nRn , (196)
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where (192) uses Pr(A ∩ B) ≥ Pr(A)− Pr(Bc), (193) applies
μm−1(x

m−2
1 ) ≥ 1 − e−nδ , (194) makes use of the bounds on

Pr(d(X �, xm) ≤ �) and Rn in (90) and (83) respectively, and
(196) uses the definition of δn in (20).

The recursion in (188) proceeds in the exact same way as
the constant-composition case in Appendix A (with a factor
of 2 removed), and we get

Pr(xm) ≥ PX(xm) · (1 − δ2
n)e

−δn . (197)
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