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Multiuser Random Coding Techniques
for Mismatched Decoding
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Abstract— This paper studies multiuser random coding
techniques for channel coding with a given (possibly suboptimal)
decoding rule. For the mismatched discrete memoryless
multiple-access channel, an error exponent is obtained that is
tight with respect to the ensemble average, and positive within
the interior of Lapidoth’s achievable rate region. This exponent
proves the ensemble tightness of the exponent of Liu and Hughes
in the case of maximum-likelihood decoding. An equivalent dual
form of Lapidoth’s achievable rate region is given, and the latter
is shown to immediately extend to channels with infinite and
continuous alphabets. In the setting of single-user mismatched
decoding, similar analysis techniques are applied to a refined
version of superposition coding, which is shown to achieve rates
at least as high as standard superposition coding for any set of
random-coding parameters.

Index Terms— Mismatched decoding, multiple-access channel,
superposition coding, random coding, error exponents, ensemble
tightness, Lagrange duality, maximum-likelihood decoding.

I. INTRODUCTION

THE mismatched decoding problem [1]–[9] seeks to
characterize the performance of coded communication

systems when the decoding rule is fixed and possibly
suboptimal. This problem is of interest, for example,
when the optimal decoding rule is infeasible due to
channel uncertainty or implementation constraints. Finding a
single-letter expression for the mismatched capacity (i.e. the
highest achievable rate with mismatched decoding; see
Section I-A for formal definitions) remains an open problem
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even for single-user discrete memoryless channels. The vast
majority of existing works have focused on achievability
results via random coding.

The most notable early works are by Hui [1] and
Csiszár and Körner [2], who independently derived the
achievable rate known as the LM rate, using random codes
in which each codeword has a constant or nearly-constant
composition. A generalization to infinite and continuous
alphabets was given by Ganti et al. [7] using cost-constrained
coding techniques, relying on a Lagrange dual formulation of
the LM rate that first appeared in [4]. In general, the LM rate
can be strictly smaller than the mismatched capacity [3], [6].
Motivated by the lack of converse results, the concept of
ensemble tightness has been addressed in [4], [7], and [8],
where it has been shown that, for any DMC, the LM rate
is the best rate possible for the constant-composition and
cost-constrained random-coding ensembles. In [3], Csiszár and
Narayan showed that better achievable rates can be obtained
by applying the LM rate to the second-order product channel,
and similarly for higher-order products. Random-coding error
exponents for mismatched decoding were given in [8], [10],
and [11], and ensemble tightness was addressed in [8].

The mismatched multiple-access channel (MAC) was
considered by Lapidoth [6], who obtained an achievable rate
region and showed the surprising fact that the single-user
LM rate can be improved by treating the single-user channel
as a MAC. Thus, as well as being of independent interest,
network information theory problems with mismatched
decoding can also provide valuable insight into the single-user
mismatched decoding problem. In recent work that developed
independently of ours, Somekh-Baruch [9] gave error
exponents and rate regions for the cognitive MAC (i.e. the
MAC where one user knows both messages and the other
only knows its own) using two multiuser coding schemes:
superposition coding and random binning. When applied to
single-user mismatched channels, these yield achievable rates
that can improve on those by Lapidoth when certain auxiliary
variables are fixed.

In this paper, we build on the work of [6] and study
multiuser coding techniques for channels with mismatched
decoding. Our main contributions are as follows:

1) We develop a variety of tools for studying multiuser
random coding ensembles in mismatched decoding
settings. Broadly speaking, our techniques permit
the derivations of ensemble-tight error exponents for
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channels with finite input and output alphabets, as well
as generalizations to continuous alphabets based on
Lagrange duality analogous to those for the single-user
setting mentioned above.

2) By applying our techniques to the mismatched MAC,
we provide an alternative derivation of Lapidoth’s
rate region [6] that also yields the ensemble-tight
error exponent, and the appropriate generalization to
continuous alphabets. By specializing to the case of
ML decoding, we prove the ensemble tightness of the
exponent given in [12] for constant-composition random
coding, which was previously unknown.

3) For the single-user channel, we introduce a refined
version of superposition coding that yields rates at least
as high as the standard version [9], [13] for any choice
of parameters, with strict improvements possible when
the input distribution is fixed.

To avoid overlap with [9], we have omitted the parts of our
work that appeared therein; however, these can also be found
in [13].

For mismatched DMCs, the results of this paper and
various previous works can be summarized by the following
list of random-coding constructions, in decreasing order of
achievable rate:

1) Refined superposition coding (Theorems 7 and 8),
2) Standard superposition coding (Theorems 5 and 6;

see [9], [13]),
3) Expurgated parallel coding [6],
4) Constant-composition or cost-constrained coding with

independent codewords (LM Rate [1], [2], [7]),
5) i.i.d. coding with independent codewords (generalized

mutual information [10]).
The gap between 1) and 2) can be strict for a given input
distribution; no examples are known where the gap between
2) and 3) is strict; and the gaps between the remaining
three can be strict even for an optimized input distribution.
Numerical examples are provided in Section IV-B.

A. System Setup

Throughout the paper, we consider both the mismatched
single-user channel and the mismatched multiple-access
channel. Here we provide a description of each.

1) Mismatched Single-User Channel: The input and output
alphabets are denoted by X and Y respectively, and the
channel transition law is denoted by W (y|x), thus yielding
an n-letter transition law given by

W n(y|x) �
n∏

i=1

W (yi |xi ). (1)

If X and Y are finite, the channel is referred to as a discrete
memoryless channel (DMC). We consider length-n block
coding, in which a codebook C = {x(1), . . . , x(M)} is known
at both the encoder and decoder. The encoder takes as input
a message m uniformly distributed on the set {1, . . . , M},
and transmits the corresponding codeword x(m). The decoder
receives the vector y at the output of the channel, and forms

the estimate

m̂ = arg max
j∈{1,...,M}

qn(x( j ), y), (2)

where n is the length of each codeword, and qn(x, y) �∏n
i=1 q(xi , yi ). The function q(x, y) is called the decoding

metric, and is assumed to be non-negative. In the case
of a tie, a codeword achieving the maximum in (2) is
selected uniformly at random. In the case that q(x, y) =
W (y|x), the decoding rule in (2) is that of optimal
maximum-likelihood (ML) decoding.

A rate R is said to be achievable if, for all δ > 0, there
exists a sequence of codebooks Cn with at least exp(n(R −δ))
codewords of length n such that limn→∞ pe(Cn) = 0 under
the decoding metric q . The mismatched capacity of a given
channel and metric is defined to be the supremum of all
achievable rates.

An error exponent E(R) is said to be achievable if there
exists a sequence of codebooks Cn with at least exp(n R)
codewords of length n such that

lim inf
n→∞ − 1

n
log pe(Cn) ≥ E(R). (3)

We let pe(n, M) denote the average error probability with
respect to a given random-coding ensemble that will be clear
from the context. A random-coding error exponent Er (R) is
said to exhibit ensemble tightness if

lim
n→∞ − 1

n
log pe(n, enR) = Er (R). (4)

For all of the cases of interest in this paper, the limit will exist.
With these definitions, the above-mentioned LM rate is

given as follows for an arbitrary input distribution Q:

ILM(Q) � min
P̃XY :P̃X =Q, P̃Y =PY

EP̃ [log q(X,Y )]≥EP [log q(X,Y )]
IP̃ (X; Y ), (5)

where PXY = Q ×W . This rate can equivalently be expressed
as [4]

ILM(Q) = sup
s≥0,a(·)

E

[
log

q(X, Y )sea(X)

E[q(X , Y )sea(X)|Y ]

]
, (6)

where (X, Y, X ) ∼ Q(x)W (y|x)Q(x). In the terminology
of [7], (5) is the primal expression and (6) is the dual
expression.

2) Mismatched Multiple-Access Channel: We also
consider a 2-user memoryless MAC W (y|x1, x2) with
input alphabets X1 and X2 and output alphabet Y .
In the case that each alphabet is finite, the MAC is
referred to as a discrete memoryless MAC (DM-MAC).
The decoding metric is denoted by q(x1, x2, y), and
we write W n(y|x1, x2) �

∏n
i=1 W (yi |x1,i , x2,i ) and

qn(x1, x2, y) �
∏n

i=1 q(x1,i , x2,i , yi ).
Encoder ν = 1, 2 takes as input a message mν

uniformly distributed on the set {1, . . . , Mν }, and transmits
the corresponding codeword x(mν )

ν from the codebook Cν =
{x(1)

ν , . . . , x(Mν)
ν }. Given the output sequence y, the decoder

forms an estimate (m̂1, m̂2) of the message pair, given by

(m̂1, m̂2) = arg max
(i, j )∈{1,...,M1}×{1,...,M2}

qn(x(i)
1 , x( j )

2 , y). (7)
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We assume that ties are resolved uniformly at random.
Similarly to the single-user case, optimal ML decoding is
recovered by setting q(x1, x2, y) = W (y|x1, x2).

An error is said to have occurred if the estimate (m̂1, m̂2)
differs from (m1, m2). The error probability for a given
pair of codebooks (C1, C2) is denoted by pe(C1, C2), and
the error probability for a given random-coding ensemble is
denoted by pe(n, M1, M2). We define achievable rate pairs,
error exponents, and ensemble tightness analogously to the
single-user setting.

B. Notation
We use bold symbols for vectors (e.g. x1, y), and denote

the corresponding i -th entry using a non-bold symbol with a
subscript (e.g. x1,i , yi ). All logarithms have base e. Moreover,
all rates are in units of nats except in the examples, where
bits are used. We define [c]+ = max{0, c}, and denote the
indicator function by 1{·}.

The symbol ∼ means “distributed as”. The set of all
probability distributions on an alphabet, say X , is denoted
by P(X ), and the set of all empirical distributions on a
vector in X n (i.e. types [14, Ch. 2], [15]) is denoted by
Pn(X ). Similar notations P(Y|X ) and Pn(Y|X ) are used
for conditional distributions, with the latter adopting the
convention that the empirical distribution of y given x is
uniform for values of x that do not appear in x. For a given
Q ∈ Pn(X ), the type class T n(Q) is defined to be the set
of all sequences in X n with type Q. For a given joint type
PXY ∈ Pn(X ×Y) and sequence x ∈ T n(PX ), the conditional
type class T n

x (PXY ) is defined to be the set of all sequences y
such that (x, y) ∈ T n(PXY ).

The probability of an event is denoted by P[·]. The
marginals of a joint distribution PXY (x, y) are denoted by
PX (x) and PY (y). We write PX = P̃X to denote element-wise
equality between two probability distributions on the same
alphabet. Expectation with respect to a joint distribution
PXY (x, y) is denoted by EP [·], or simply E[·] when the
associated probability distribution is understood from the
context. Similarly, mutual information with respect to PXY is
written as IP(X; Y ), or simply I (X; Y ). Given a distribution
Q(x) and conditional distribution W (y|x), we write Q × W
to denote the joint distribution defined by Q(x)W (y|x).

For two positive sequences fn and gn , we write fn
.= gn

if limn→∞ 1
n log fn

gn
= 0, fn ≤̇ gn if lim supn→∞ 1

n

log fn
gn

≤ 0, and analogously for ≥̇. We make use of the
standard asymptotic notations O(·), o(·) and �(·). When
studying the MAC, we index the users as ν = 1, 2, and let νc

denote the unique index differing from ν.

II. MULTIPLE-ACCESS CHANNEL

In this section, we study the mismatched multiple-access
channel introduced in Section I-A. We consider random
coding, in which each codeword of user ν = 1, 2 is generated
independently according to some distribution PXν . We let X (i)

ν

be the random variable corresponding to the i -th codeword of
user ν, yielding
(
{X(i)

1 }M1
i=1, {X ( j )

2 }M2
i=1

)
∼

M1∏

i=1

PX1(x(i)
1 )

M2∏

j=1

PX2(x( j )
2 ). (8)

We assume without loss of generality that message (1, 1) is
transmitted, and write X1 and X2 in place of X (1)

1 and X(1)
2 .

We write X1 and X2 to denote arbitrary codewords that are
generated independently of X1 and X2. The random sequence
at the output of the channel is denoted by Y . It follows that

(X1, X2, Y , X1, X2) ∼ PX1(x1)PX2(x2)W n(y|x1, x2)

×PX1(x1)PX2(x2). (9)

For clarity of exposition, we focus primarily on the case that
there is no time-sharing (e.g. see [12]). In Section II-D, we
discuss some of the corresponding results with time-sharing.

We study the random-coding error probability by
considering the following events:

(Type 1)
qn(X (i)

1 , X2, Y )

qn(X1, X2, Y )
≥ 1 for some i �= 1;

(Type 2)
qn(X1, X ( j )

2 , Y )

qn(X1, X2, Y)
≥ 1 for some j �= 1;

(Type 12)
qn(X (i)

1 , X ( j )
2 , Y )

qn(X1, X2, Y )
≥ 1 for some i �= 1, j �= 1.

We refer to these as error events, though they do not
necessarily imply decoder errors when the inequalities hold
with equality, since we have assumed that the decoder resolves
ties uniformly at random.

The probabilities of the error events are denoted by
pe,1(n, M1), pe,2(n, M2) and pe,12(n, M1, M2), and the
overall random-coding error probability is denoted by
pe(n, M1, M2). Since breaking ties as errors increases the
error probability by at most a factor of two [16], we have

1

2
max{pe,1, pe,2, pe,12} ≤ pe ≤ pe,1 + pe,2 + pe,12. (10)

A. Exponents and Rates for the DM-MAC

In this subsection, we study the DM-MAC using the
constant-composition ensemble. For ν = 1, 2, we fix Qν ∈
P(Xν) and let PXν be the uniform distribution on T n(Qν,n),
where Qν,n ∈ Pn(Xν) is a type with the same support as Qν

such that maxxν |Qν,n(xν) − Qν(xν)| ≤ 1
n . Thus,

PXν (xν) = 1

|T n(Qν,n)|1
{

xν ∈ T n(Qν,n)
}
. (11)

Our analysis is based on the method of types [14, Ch. 2].
Throughout the section, we write f ( Q) to denote a quantity f
that depends on Q1 and Q2. Similarly, we write f ( Qn) to
denote a quantity that depends on Q1,n and Q2,n .

1) Error Exponents: The error exponents and achievable
rates are expressed in terms of the following sets
(ν = 1, 2):

S( Q) �
{

PX1 X2Y ∈ P(X1 × X2 × Y) :
PX1 = Q1, PX2 = Q2

}
(12)

Tν(PX1 X2Y )

�
{

P̃X1 X2Y ∈ P(X1 × X2 × Y) :
P̃Xν = PXν , P̃Xνc Y = PXνc Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}

(13)
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T12(PX1 X2Y )

�
{

P̃X1 X2Y ∈ P(X1 × X2 × Y) :
P̃X1 = PX1 , P̃X2 = PX2, P̃Y = PY ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}
, (14)

where we recall that for ν = 1, 2, νc denotes the unique
element differing from ν.

Theorem 1: For any mismatched DM-MAC, for the
constant-composition ensemble in (11) with input distributions
Q1 and Q2, the ensemble-tight error exponents are given as
follows for ν = 1, 2:

lim
n→∞ − 1

n
log pe,ν(n, enRν ) = Ecc

r,ν( Q, Rν) (15)

lim
n→∞ − 1

n
log pe,12(n, enR1, enR2) = Ecc

r,12( Q, R1, R2), (16)

where

Ecc
r,ν( Q, Rν)

� min
PX1 X2Y ∈S( Q)

min
P̃X1 X2Y ∈Tν(PX1 X2Y )

D(PX1 X2Y ‖Q1 × Q2 × W ) + [
IP̃ (Xν; Xνc , Y ) − Rν

]+ (17)

Ecc
r,12( Q, R1, R2)

� min
PX1 X2Y ∈S( Q)

min
P̃X1 X2Y ∈T12(PX1 X2Y )

D(PX1 X2Y ‖Q1 × Q2 × W )

+
[

max
{

IP̃ (X1; Y ) − R1, IP̃ (X2; Y ) − R2,

D
(
P̃X1 X2Y ‖Q1 × Q2 × PY

)− R1 − R2

}]+
. (18)

Proof: The random-coding error probabilities pe,1 and
pe,2 can be handled similarly to the single-user setting [8].
Furthermore, equivalent error exponents to (17) (ν = 1, 2)
were given in [17]. We therefore focus on pe,12, which requires
a more careful analysis. We first rewrite

pe,12

= E

[
P

[ ⋃

i �=1, j �=1

{
qn(X (i)

1 , X ( j )
2 , Y )

qn(X1, X2, Y )
≥ 1

}∣∣∣∣X1, X2, Y
]]

(19)

in terms of the possible joint types of (X1, X2, Y ) and
(X(i)

1 , X ( j )
2 , Y ). To this end, we define

Sn( Qn) �
{

PX1 X2Y ∈ Pn(X1 × X2 × Y) :
PX1 = Q1,n, PX2 = Q2,n

}
(20)

T12,n(PX1 X2Y ) � T12(PX1 X2Y ) ∩ Pn(X1 × X2 × Y). (21)

Roughly speaking, Sn is the set of possible joint types
of (X1, X2, Y ), and T12,n(PX1 X2Y ) is the set of types
of (X(i)

1 , X( j )
2 , Y) that lead to decoding errors when

(X1, X2, Y ) ∈ T n(PX1 X2Y ). The constraints on PXν and P̃Xν

arise from the fact that we are using constant-composition
random coding, and the constraint EP̃ [log q(X1, X2, Y )] ≥
EP [log q(X1, X2, Y )] holds if and only if qn(x1, x2, y) ≥
qn(x1, x2, y) for (x1, x2, y) ∈ T n(PX1 X2Y ) and (x1, x2, y) ∈

T n(P̃X1 X2Y ). Fixing PX1 X2Y ∈ Sn( Qn) and letting (x1, x2, y)
be an arbitrary triplet of sequences such that (x1, x2, y) ∈
T n(PX1 X2Y ), it follows that the event in (19) can be written as

⋃

i �=1, j �=1

⋃

P̃X1 X2Y ∈T12,n

{
(X(i)

1 , X( j )
2 , Y) ∈ T n(P̃X1 X2Y )

}
. (22)

Expanding the probability and expectation in (19) in terms
of types, substituting (22), and interchanging the order of the
unions, we obtain

pe,12 =
∑

PX1 X2Y ∈Sn( Qn)

P
[
(X1, X2, Y ) ∈ T n(PX1 X2Y )

]

×P

[ ⋃

P̃X1 X2Y ∈T12,n (PX1 X2Y )

⋃

i �=1, j �=1
{
(X (i)

1 , X ( j )
2 , y) ∈ T n(P̃X1 X2Y )

}]
(23)

.= max
PX1 X2Y ∈Sn( Qn)

P
[
(X1, X2, Y ) ∈ T n(PX1 X2Y )

]

× max
P̃X1 X2Y ∈T12,n (PX1 X2Y )

P

[ ⋃

i �=1, j �=1{
(X(i)

1 , X ( j )
2 , y) ∈ T n(P̃X1 X2Y )

}]
, (24)

where y is an arbitrary element of T n(PY ) (hence depending
implicitly on PX1 X2Y ), and (24) follows from the union bound
and since the number of joint types is polynomial in n.

By a standard property of types [14, Ch. 2], the exponent
of the first probability in (24) is given by D(PX1 X2Y ‖Q1 ×
Q2 × W ), so it only remains to determine the exponential
behavior of the second probability. To this end, we make use
of Lemma 2 in Appendix A with Z1(i) = X(i)

1 , Z2( j) = X ( j )
2 ,

A = T n
y (P̃X1 X2Y ), A1 = T n

y (P̃X1Y ) and A2 = T n
y (P̃X2Y ).

Using (A.9)–(A.10) and standard properties of types
[14, Ch. 2], it follows that the second probability in (24) has
an exponent of
[

max
{

IP̃ (X1; Y ) − R1, IP̃ (X2; Y ) − R2,

D
(

P̃X1 X2Y ‖Q1 × Q2 × PY
)− R1 − R2

}]+
. (25)

Upon substituting (25) into (24), it only remains to replace the
sets Sn and T12,n by S and T12 respectively. This is seen to be
valid since the underlying objective function is continuous in
P̃X1 X2Y , and since any joint distribution has a corresponding
joint type which is within 1

n in each value of the probability
mass function. See the discussion around [18, eq. (30)] for the
analogous continuity argument in the single-user setting.

Theorem 1 and (10) reveal that the overall ensemble-tight
error exponent is given by

Ecc
r ( Q, R1, R2) � min

{
Ecc

r,1( Q, R1), Ecc
r,2( Q, R2),

Ecc
r,12( Q, R1, R2)

}
. (26)

The proof of Theorem 1 made use of the refined union
bound given in Lemma 2. If we had instead used the standard
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truncated union bound in (A.1), we would have obtained the
weaker type-12 exponent

Ecc′
r,12( Q, R1, R2)

� min
PX1 X2Y ∈S( Q)

min
P̃X1 X2Y ∈T12(PX1 X2Y )

D(PX1 X2Y ‖Q1 × Q2 × W )

+ [D(P̃X1 X2Y ‖Q1 × Q2 × PY ) − (R1 + R2)
]+

, (27)

which coincides with an achievable exponent given in [17].
2) Achievable Rate Region: The following theorem is a

direct consequence of Theorem 1, and provides an alternative
proof of Lapidoth’s ensemble-tight achievable rate region [6].

Theorem 2: The overall error exponent Ecc
r ( Q, R1, R2)

in (26) is positive for all rate pairs (R1, R2) in the interior
of RLM( Q), defined to be the set of all rate pairs (R1, R2)
satisfying the following for ν = 1, 2:

Rν ≤ min
P̃X1 X2Y ∈Tν(Q1×Q2×W )

IP̃ (Xν; Xνc , Y ) (28)

R1 + R2 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

IP̃ (X1;Y )≤R1,IP̃ (X2;Y )≤R2

D(P̃X1 X2Y ‖Q1 × Q2 × PY ). (29)

Proof: The conditions in (28)–(29) are obtained
from (17)–(18) respectively. Focusing on (29), we see that
the objective in (18) is always positive when D(PX1 X2Y ‖Q1 ×
Q2×W ) > 0, IP̃(X1; Y ) > R1 or IP̃ (X2; Y ) > R2. Moreover,
by a similar argument to [3, Lemma 1], the right-hand side
of (18), with only the second minimization kept, is continuous
as a function of PX1 X2Y when restricted to distributions with
the same support as Q1 × Q2 × W . Hence, we may substitute
Q1 × Q2 × W for PX1 X2Y (thus forcing the first divergence
to zero) and introduce the constraints IP̃(X1; Y ) ≤ R1 and
IP̃ (X2; Y ) ≤ R2 to obtain the condition in (29).

Using a time-sharing argument [6], [19] (see
also Section II-D), it follows from Theorem 2 that we
can achieve any rate pair in the convex hull of

⋃
Q RLM( Q),

where the union is over all distributions Q1 and Q2 on X1
and X2 respectively.

Using a similar argument to the proof of Theorem 2,
we see that (27) yields the rate condition

R1 + R2 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

D(P̃X1 X2Y ‖Q1 × Q2 × PY ). (30)

In Section IV-A, we compare (18) and (29) with the weaker
expressions in (27) and (30).

B. Exponents and Rates for General Alphabets

In this section, we present equivalent dual expressions
for the rates given in Theorem 2, and extend them to the
memoryless MAC with general alphabets. While we focus
on rates for brevity, dual expressions and continuous-alphabet
generalizations for the exponents in Theorem 1 can be
obtained similarly; see [13, Sec. 4.2] for details.

We use the cost-constrained ensemble [8], [11], defined
as follows. We fix Q1 ∈ P(X1) and Q2 ∈ P(X2), and
choose

PXν (xν) = 1

μν,n

n∏

i=1

Qν(xν,i)1
{

xν ∈ Dν,n
}

(31)

for ν = 1, 2, where μν,n is a normalizing constant, and

Dν,n �
{

xν :
∣∣∣∣∣
1

n

n∑

i=1

aν,l(xν,i) − φν,l

∣∣∣∣∣ ≤ δ

n
,

l = 1, . . . , Lν

}
, (32)

where {aν,l}Lν
l=1 are auxiliary cost functions, δ is a positive

constant, and φν,l � EQν [aν,l(Xν)]. Thus, the codewords
for user ν are constrained to satisfy Lν cost constraints in
which the empirical mean of aν,l(·) is close to the true mean.
We allow each of the parameters to be optimized, including
the cost functions. The case Lν = 0 should be understood as
corresponding to the case that Dν,n contains all xν sequences,
thus recovering the i.i.d. distribution studied in [20]. In the case
of finite input alphabets, the constant-composition ensemble
can also be recovered by setting Lν = |Xν | and letting each
auxiliary cost function be the indicator function of its argument
equaling a given input symbol [8].

The cost-constrained ensemble has primarily been used
with Lν = 1 [11], [21], but the inclusion of multiple cost
functions has proven beneficial in the mismatched single-user
setting [8], [22]. We will see that the use of multiple costs
is beneficial for both the matched and mismatched MAC.
We note that system costs (as opposed to the auxiliary costs
used here) can easily be handled (e.g. see [8, Sec. VII], [22]),
but in this paper we assume for simplicity that the channel is
unconstrained.

The following proposition from [8] will be useful.
Proposition 1: [8, Proposition 1] For ν = 1, 2, fix the

input distribution Qν along with Lν and the auxiliary cost
functions {aν,l}Lν

l=1. Then μν,n = �(n−Lν/2) provided that
EQν [aν,l(Xν)

2] < ∞ for l = 1, . . . , Lν .
The main result of this subsection is the following.
Theorem 3: The region RLM( Q) in (28)–(29) can be

expressed as the set of rate pairs (R1, R2) satisfying

R1 ≤ sup
s≥0,a1(·)

E

[
log

q(X1, X2, Y )sea1(X1)

E
[
q(X1, X2, Y )sea1(X1)|X2, Y

]

]
(33)

R2 ≤ sup
s≥0,a2(·)

E

[
log

q(X1, X2, Y )sea2(X2)

E
[
q(X1, X 2, Y )sea2(X2)|X1, Y

]

]
, (34)

and at least one of

R1 ≤ sup
ρ2∈[0,1],s≥0,a1(·),a2(·)

−ρ2 R2

+ E

[
log

(
q(X1, X2, Y )sea2(X2)

)ρ2ea1(X1)

E

[(
E
[
q(X1, X 2, Y )sea2(X2)

∣∣X 1
])ρ2

ea1(X1)
∣∣Y
]
]

(35)
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R2 ≤ sup
ρ1∈[0,1],s≥0,a1(·),a2(·)

−ρ1 R1

+ E

[
log

(
q(X1, X2, Y )sea1(X1)

)ρ1 ea2(X2)

E

[(
E
[
q(X1, X 2, Y )sea1(X1)

∣∣X2
])ρ1

ea2(X2)
∣∣Y
]
]
,

(36)

where (X1, X2, Y, X 1, X 2) is distributed as
Q1(x1)Q2(x2)W (y|x1, x2)Q1(x1)Q2(x2).

Moreover, this region is achievable for any memoryless
MAC (possibly having infinite or continuous alphabets) and
any pair (Q1, Q2), where each supremum is subject to
EQν [aν(Xν)

2] < ∞ (ν = 1, 2). Any point in the region can
be achieved using cost-constrained coding with L1 = L2 = 3.

Proof: The equivalence of this rate region to (28)–(29) is
proved in Appendix C. Here we prove the second claim of the
theorem by providing a direct derivation.

The key initial step is to obtain the following
non-asymptotic bound on the type-12 error event, holding for
any codeword distributions PX1 and PX2 :

pe,12(n, M1, M2) ≤ min
ν=1,2

rcu12,ν(n, M1, M2), (37)

where for ν = 1, 2 we define

rcu12,ν(n, M1, M2)

� E

[
min

{
1, (Mν − 1)E

[
min

{
1, (Mνc − 1)

× P

[
qn(X1, X2, Y )

qn(X1, X2, Y )
≥ 1

∣∣∣∣Xν

]}∣∣∣∣X1, X2, Y
]}]

. (38)

To prove this, we first write

pe,12

= P

[ ⋃

i �=1, j �=1

{
qn(X(i)

1 , X ( j )
2 , Y )

qn(X1, X2, Y )
≥ 1

}]
(39)

= E

[
P

[ ⋃

i �=1, j �=1

{
qn(X (i)

1 , X ( j )
2 , Y )

qn(X1, X2, Y )
≥ 1

}∣∣∣∣X1, X2, Y
]]

.

(40)

We obtain the above-mentioned bounds by applying Lemma 1
in Appendix A to the union in (40) (with Z1(i) = X (i)

1 and
Z2( j) = X( j )

2 ), and then writing min{1, α, β} ≤ min{1, α}
and min{1, α, β} ≤ min{1, β}.

Define Qn
ν (xν) �

∏n
i=1 Qν(xν,i) for ν = 1, 2.

Expanding (38) and applying Markov’s inequality and
min{1, α} ≤ αρ (0 ≤ ρ ≤ 1), we obtain1

rcu12,1(n, M1)

≤
∑

x1,x2,y

PX1(x1)PX2(x2)W n(y|x1, x2)

(
M1

∑

x1

PX1(x1)

×
(

M2

∑
x2

PX2(x2)qn(x1, x2, y)s

qn(x1, x2, y)s

)ρ2
)ρ1

(41)

for any ρ1 ∈ [0, 1], ρ2 ∈ [0, 1] and s ≥ 0. For ν = 1, 2, we let
aν(x) be one of the three cost functions in the ensemble, and

1In the case of continuous alphabets, the summations should be replaced
by integrals as necessary.

we define an
ν (xν) �

∑n
i=1 aν(xν,i ) and φν � EQν [aν(Xν)].

In accordance with the theorem statement, we assume that
EQν [aν(Xν)]2 < ∞, so that Proposition 1 holds. Using the
bounds on the cost functions in (32), we can weaken (41) to

rcu12,1(n, M1) ≤ e2δ(ρ1+ρ1ρ2+1)

×
∑

x1,x2,y

PX1(x1)PX2(x2)W n(y|x1, x2)

(
M1

∑

x1

PX1(x1)

×
(

M2

∑
x2

PX2(x2)qn(x1, x2, y)sean
2 (x2)

qn(x1, x2, y)sean
2 (x2)

)ρ2 ean
1 (x1)

ean
1 (x1)

)ρ1

.

(42)

We upper bound (42) by substituting (31) and replacing the
summations over Dν,n by summations over all sequences
on X n

ν . Writing the resulting terms (e.g. W n(y|x1, x2)) as a
product from 1 to n and taking the supremum over (s, ρ1, ρ2)
and the cost functions, we obtain a bound whose exponent is

max
ρ1∈[0,1],ρ2∈[0,1] Ecost

0,12,1( Q, ρ1, ρ2) − ρ1(R1 + ρ2 R2), (43)

where

Ecost
0,12,1( Q, ρ1, ρ2)

� sup
s≥0,a1(·),a2(·)

− log E

[(
E

[(
E
[
q(X1, X 2, Y )sea2(X2)|X1

]

q(X1, X2, Y )sea2(X2)

)ρ2

× ea1(X1)

ea1(X1)

∣∣∣∣X1, X2, Y

])ρ1
]
. (44)

We obtain the condition in (35) by taking the derivative
of Ecc

0,12,1 at zero, analogously to the proof of Theorem 3.
We obtain (36) analogously by starting with rcu12,2 in place
of rcu12,1, and we obtain (33)–(34) via a simpler analysis
following the standard single-user setting [8].

Finally, we note that L1 = L2 = 3 suffices due to the
fact that the cost functions used in deriving (35)–(36) may
coincide, since the theorem statement only requires one of the
two to hold.

Theorem 3 extends Lapidoth’s MAC rate region to general
alphabets, analogously to the extension of the single-user
LM rate to general alphabet by Ganti et al. [7]. Compared to
the single-user setting, the extension is non-trivial, requiring
refined union bounds, as well as a technique for handling the
two additional in constraints in (29) one at a time, thus leading
to two type-12 conditions in (35)–(36).

C. Matched MAC Error Exponent

Here we apply our results to the setting of ML
decoding, where q(x1, x2, y) = W (y|x1, x2). The best
known exponent for the constant-composition ensemble was
derived by Liu and Hughes [12], and was shown to
yield a strict improvement over Gallager’s exponent for the
i.i.d. ensemble [20] even after the optimization of the input
distributions.

We have seen that for a general decoding metric, the overall
error exponent Ecc

r given in (26) may be reduced when Ecc′
r,12

in (27) is used in place of Ecc
r,12. The following result shows



3956 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 7, JULY 2016

that the resulting expressions are in fact identical in the
matched case.

Theorem 4: Under ML decoding (i.e. q(x1, x2, y) =
W (y|x1, x2)), we have for any input distributions (Q1, Q2)
and rates (R1, R2) that

min
{

Ecc
r,1( Q, R1), Ecc

r,2( Q, R2), Ecc
r,12( Q, R1, R2)

}

= min
{

Ecc
r,1( Q, R1), Ecc

r,2( Q, R2), Ecc′
r,12( Q, R1, R2)

}
. (45)

Thus, both the left-hand side and right-hand side of (45) equal
the overall ensemble-tight error exponent.

Proof: See Appendix C.
While it is possible that Ecc

r,12 > Ecc′
r,12 under ML decoding,

Theorem 4 shows that this never occurs in the region
where Ecc

r,12 achieves the minimum in (26). Thus, combining
Theorem 4 and Theorem 1, we conclude that the exponent
given in [12] is ensemble-tight for the constant-composition
ensemble under ML decoding.

In [13, Sec. 4.2.4], [23], we show that the error exponent
of [12] admits a dual form resembling the i.i.d. exponent
of Gallager [20], but with additional optimization para-
meters a1(·) and a2(·) that are functions of the input
alphabets X1 and X2. As usual, this dual form can also be
derived directly via the cost-constrained ensemble, with the
analysis remaining valid for infinite and continuous alphabets.

D. Time-Sharing

Thus far, we have focused on the standard random
coding ensemble described by (8), where the codewords are
independent. It is well-known that even in the matched case,
the union of the resulting achievable rate regions over all
(Q1, Q2) may be non-convex, and time-sharing is needed
to achieve the rest of the capacity region [24]. There are
two distinct ways of doing so: (i) With explicit time-sharing,
one splits the block of length n into two or more smaller
blocks, and uses separate codebooks within each block;
(ii) With coded time-sharing, one still generates a single
codebook, but the codewords are conditionally independent
given some time-sharing sequence U on a time-sharing
alphabet U . In particular, in the case of constant-composition
random coding, one may let U be uniform on a type class
corresponding to QU ∈ P(U), and let each Xν be uniform on
a conditional type class corresponding to Qν ∈ P(Xν |U).

While both of these schemes yield the entire capacity region
in the matched case [19, Ch. 4], the coded time-sharing
approach is generally preferable in terms of exponents [12].
Intuitively, this is because explicit time-sharing shortens the
effective block length, thus diminishing the exponent.

Surprisingly, however, explicit time-sharing can outperform
coded time-sharing in the mismatched case, even in terms of
the achievable rate region. This is most easily understood via
the dual-domain expressions, and for concreteness we consider
the case |U | = 2 with QU = (λ, 1 − λ). Let I1( Q, s)
denote the right-hand side of (33) with a fixed value of s in
place of the supremum. Using explicit time-sharing with two
different input distribution pairs Q(1) and Q(2), the condition

corresponding to (33) is given by

R1 ≤ λ sup
s≥0

I1( Q(1), s) + (
1 − λ

)
sup
s≥0

I1( Q(2), s), (46)

whereas coded time-sharing only permits

R1 ≤ sup
s≥0

(
λI1( Q(1), s) + (

1 − λ
)
I1( Q(2), s)

)
. (47)

These are obtained using similar arguments to the case without
time-sharing; see [13, Sec. 4.2.5] for further details. Similar
observations apply for the other rate conditions, including the
parameters ρ1 and ρ2 in (35)–(36).

It is evident from (46) (and the other analogous rate
conditions) that explicit time-sharing between two points can
be used to obtain any pair (R1, R2) on the line connecting
two achievable pairs corresponding to Q(1) and Q(2). On the
other hand, the same is only true for coded time-sharing if
there exists a single parameter s simultaneously maximizing
both terms in the objective function of (47) (and similarly for
the other rate conditions), which is not the case in general.

Building on this insight, in the following section, we
compare two forms of superposition coding for single-user
channels. The standard version can be viewed as analogous to
coded time-sharing, whereas the refined version can be viewed
as analogous to explicit time-sharing. As a result, the latter can
lead to higher achievable rates.

III. SUPERPOSITION CODING

In this section, we turn to the single-user mismatched
channel introduced in Section I-A1, and consider multiuser
coding schemes that can improve on standard schemes with
independent codewords. Some numerical examples are given
in Section IV.

A. Standard Superposition Coding

We first discuss a standard form of superposition coding
that has had extensive application in degraded broadcast chan-
nels [25]–[27] and other network information theory
problems [19]. This ensemble was studied in the context of
mismatched decoding in [9] and [13], so we do not repeat the
details here.

The parameters of the ensemble are an auxiliary alphabet U ,
an auxiliary codeword distribution PU , and a conditional
codeword distribution PX |U . We fix two rates R0 and R1.
An auxiliary codebook {U(i)}M0

i=1 with M0 � �enR0

codewords is generated at random, with each auxiliary
codeword independently distributed according to PU . For
each i = 1, . . . , M0, a codebook {X(i, j )}M1

j=1 with M1 �
�enR1
 codewords is generated at random, with each codeword
conditionally independently distributed according to PX |U .
The message m at the input to the encoder is indexed as
(m0, m1), and for any such pair, the corresponding codeword
is X (m0,m1).

The following achievable rate for DMCs is obtained using
constant-composition coding with some input distribution
QU X ∈ P(U×X ), in which PU is the uniform distribution on
a type class corresponding to QU , and PX |U is the uniform
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distribution on a conditional type class corresponding to QX |U .
We define the sets

S(QU X ) �
{

PU XY ∈ P(U × X × Y) : PU X = QU X
}

(48)

T0(PU XY ) �
{

P̃U XY ∈ P(U × X × Y) : P̃U X = PU X ,

P̃Y = PY , EP̃ [log q(X, Y )] ≥ EP [log q(X, Y )]
}

(49)

T1(PU XY ) �
{

P̃U XY ∈ P(U × X × Y) : P̃U X = PU X ,

P̃UY = PUY , EP̃ [log q(X, Y )] ≥ EP [log q(X, Y )]
}
.

(50)

Theorem 5: [9], [13] Suppose that W is a DMC. For any
finite auxiliary alphabet U , and input distribution QU X ∈
P(U × X ), the rate

R = R0 + R1 (51)

is achievable provided that (R0, R1) satisfy

R1 ≤ min
P̃U XY ∈T1(QU X ×W )

IP̃ (X; Y |U) (52)

R0 + R1 ≤ min
P̃U XY ∈T0(QU X ×W )

IP̃ (U ;Y )≤R0

IP̃ (U, X; Y ). (53)

This rate is also known to be tight with respect to the
ensemble average [9], [13]. It is known to be at least as high
as Lapidoth’s expurgated parallel coding rate [6], though it is
not known whether the improvement can be strict.

Using similar steps to those in the previous section, one can
obtain the following equivalent dual form, which also remains
valid in the case of continuous alphabets [13, Sec. 5.2.2].

Theorem 6: [13] The achievable rate conditions
in (52)–(53) can be expressed as

R1 ≤ sup
s≥0,a(·,·)

E

[
log

q(X, Y )sea(U,X)

E[q(X̃ , Y )sea(U,X̃)|U, Y ]

]
(54)

R0 ≤ sup
ρ1∈[0,1],s≥0,a(·,·)

−ρ1 R1

+ E

⎡

⎢⎣log

(
q(X, Y )sea(U,X)

)ρ1

E

[(
E
[
q(X, Y )sea(U,X)

∣∣U
])ρ1∣∣Y

]

⎤

⎥⎦, (55)

where (U, X, Y, X̃ , U , X) is distributed as
QU X (u, x)W (y|x)QX |U (̃x |u)QU X (u, x).

We observe that superposition coding has some similarity
to the coded time-sharing ensemble discussed in Section II-D,
in that both involve generating codewords x conditionally on
auxiliary sequences u according to the uniform distribution
on a type class. We saw in Section II-D that better rates are
in fact achieved by explicit time-sharing, in which one splits
the block length into sub-blocks and codes individually on
each one. We now apply this approach to superposition coding,
yielding a refined ensemble that can lead to higher achievable
rates than the standard version.

B. Refined Superposition Coding

The ensemble is defined as follows. We fix a finite
alphabet U , an input distribution QU ∈ P(U) and the rates R0

Fig. 1. The construction of the codeword from the auxiliary sequence u
and the partial codewords x1, x2 and x3 for refined SC. Here we have
U = {1, 2, 3}, X = {a, b, c}, n1 = n2 = n3 = 4, and n = 12.

and {R1u}u∈U . We write M0 � �enR0
 and M1u � �enR1u 
.
We let PU (u) be the uniform distribution on the type class
T n(QU,n), where QU,n is a type with the same support as
QU such that maxu |QU,n(u) − QU (u)| ≤ 1

n . We set

PU (u) = 1

|T n(QU,n)|1
{

u ∈ T n(QU,n)
}

(56)

and generate the length-n auxiliary codewords {U (i)}M0
i=1

independently according to PU . The difference compared to
standard superposition coding is that the codewords are not
generated conditionally independently given U (i). Instead, we
generate a number of partial codewords, and construct the
length-n codeword by placing the entries of a partial codeword
in the indices where U takes a particular value.

More precisely, for each u ∈ U , we define

nu � QU,n(u)n (57)

and fix a partial codeword distribution PXu ∈ P(X nu ). For
each i = 1, . . . , M0 and u ∈ U , we generate the length-nu

partial codewords {X(i, ju )
u }M1u

ju=1 independently according

to PXu . For example, when U = {1, 2} we have
{(

U (i),
{

X (i, j1)
1

}M11
j1=1,

{
X(i, j2)

2

}M12
j2=1

)}M0

i=1

∼
M0∏

i=1

(
PU (u(i))

M11∏

j1=1

PX1(x(i, j1)
1 )

M12∏

j2=1

PX2(x(i, j2)
2 )

)
. (58)

The message m at the encoder is indexed as
(m0, m11, . . . , m1|U |). To transmit a given message, we treat
U(m0) as a time-sharing sequence; at the indices where
U(m0) equals u, we transmit the symbols of X(m0,m1u )

u . There
are M = M0

∏
u M1u codewords, and hence the rate is

R = R0 +∑
u QU,n(u)R1u . An example of the construction

of the codeword x from the auxiliary sequence u and partial
codewords x1, x2 and x3 is shown in Figure 1, where we
have U = {1, 2, 3} and X = {a, b, c}.

While our main result is stated for an arbitrary finite
alphabet U , the analysis will be presented for U = {1, 2}
for clarity. We proceed by presenting several definitions for
this specific choice. We let 
(u, x1, x2) denote the function
for constructing the length-n codeword from the auxiliary
sequence and partial codewords, and we write

X (i, j1, j2) � 
(U (i), X (i, j1)
1 , X (i, j2)

2 ). (59)
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We let yu(u) denote the subsequence of y corresponding to
the indices where u equals u, and similarly for Yu(u).

We assume without loss of generality that (m0, m1, m2) =
(1, 1, 1). We let U , X1, X2 and X be the codewords
corresponding to (1, 1, 1), yielding X = 
(U, X1, X2).
We let U , X1 and X2 be the codewords corresponding to an
arbitrary message with m0 �= 1. For the index i corresponding
to U , we write X

( j1)
1 , X

( j2)
2 and X

( j1, j2) in place of X(i, j1)
1 ,

X(i, j2)
2 and X (i, j1, j2) respectively. It follows that X

( j1, j2) =

(U, X

( j1)
1 , X

( j2)
2 ).

Upon receiving a realization y of the output sequence Y,
the decoder forms the estimate

(m̂0, m̂1, m̂2)

= arg max
(i, j1, j2)

qn(x(i, j1, j2), y) (60)

= arg max
(i, j1, j2)

qn1
(
x(i, j1)

1 , y1(u(i))
)
qn2
(
x(i, j2)

2 , y2(u(i))
)
, (61)

where the objective in (61) follows by separating the indices
where u = 1 from those where u = 2. By writing the objective
in this form, we see that for any given i , the pair ( j1, j2)
with the highest metric is the one for which j1 maximizes
qn1(x(i, j1)

1 , y1(u(i))) and j2 maximizes qn2(x(i, j2)
2 , y2(u(i))).

We thus consider three error events:

(Type 0)
qn(X (i, j1, j2), Y )

qn(X, Y )
≥ 1 for some i �= 1, j1, j2;

(Type 1)
qn1(X

(1, j1)
1 , Y1(U))

qn1(X1, Y1(U))
≥ 1 for some j1 �= 1;

(Type 2)
qn2(X

(1, j2)
2 , Y2(U))

qn2(X2, Y2(U))
≥ 1 for some j2 �= 1.

The corresponding probabilities are denoted by
pe,0(n, M0, M11, M12), pe,1(n, M11) and pe,2(n, M12)
respectively. Analogously to (10), the overall random-coding
error probability pe(n, M0, M11, M12) satisfies

1

2
max{pe,0, pe,1, pe,2} ≤ pe ≤ pe,0 + pe,1 + pe,2. (62)

While our analysis of the error probability will yield
non-asymptotic bounds and error exponents as intermediate
steps, we focus on the resulting achievable rates for clarity.

C. Rates for DMCs

In this subsection, we assume that the channel is a DMC.
We fix a joint distribution QU X , and let QU X,n be a corre-
sponding type with maxu,x |QU X,n(u, x) − QU X (u, x)| ≤ 1

n .
We let PXu be the uniform distribution on the type class
T nu

(
QX |U,n(·|u)

)
, yielding

PXu (xu) = 1∣∣T nu
(
QX |U,n(·|u)

)∣∣1
{

xu ∈ T nu
(
QX |U,n(·|u)

)}
.

(63)

Combining this with (56), we have by symmetry that each pair
(U (i), X (i, j1, j2)) is uniformly distributed on T n(QU X ).

The main result of this section is stated in the following
theorem, which makes use of the LM rate defined in (5) and
the set T0 defined in (49).

Theorem 7: For any finite set U and input distribution
QU X , the rate

R = R0 +
∑

u

QU (u)R1u (64)

is achievable provided that R0 and {R1u}|U |
u=1 satisfy

R1u ≤ ILM
(
QX |U (·|u)

)
, u ∈ U (65)

R0 ≤ min
P̃U XY ∈T0(QU X ×W )

IP̃ (U ; Y )

+
[

max
K⊆U ,K �=∅

∑

u∈K
QU (u)

(
IP̃ (X; Y |U = u) − R1u

)]+
.

(66)
Proof: As mentioned above, the proof is presented only

for U = {1, 2}; the same arguments apply in the general case.
Observe that the type-1 error event corresponds to the error
event for the standard constant-composition ensemble with
rate R11, length n1 = nQU (1), input distribution QX |U (·|1),
and ties treated as errors. A similar statement holds for
the type-2 error probability pe,2, and the analysis for these
error events is identical to the LM rate derivation [1], [2],
yielding (65).

The error probability for the type-0 event is given by

pe,0 = P

[⋃

i �=1

⋃

j1, j2

{
qn(X(i, j1, j2), Y )

qn(X, Y )
≥ 1

}]
, (67)

where (Y |X = x) ∼ W n(·|x). Writing the probability as an
expectation given (U, X, Y ) and applying the truncated union
bound, we obtain

pe,0

= c0E

[
min

{
1, (M0 − 1)

× E

[
P

[ ⋃

j1, j2

{
qn(X

( j1, j2)
, Y )

qn(X, Y )
≥ 1

}∣∣∣∣ Ū

]∣∣∣∣U, X, Y
]}]

, (68)

where c0 ∈ [ 1
2 , 1], since for independent events the truncated

union bound is tight to within a factor of 1
2 [28, Lemma A.2].

We have written the probability of the union over j1 and j2
as an expectation given Ū .

Let the joint types of (U, X, Y ) and (U, X
( j1, j2), Y ) be

denoted by PU XY and P̃U XY respectively. We claim that

qn(X
( j1, j2), Y )

qn(X, Y)
≥ 1 (69)

can be written as

P̃U XY ∈ T0,n(PU XY ) � T0(PU XY ) ∩ Pn(U × X × Y), (70)

where T0 is defined in (49). The constraint P̃U X = PU X

follows from the construction of the random coding ensemble,

P̃Y = PY follows since (U, X, Y) and (U, X
( j1, j2), Y ) share

the same Y sequence, and EP̃ [log q(X, Y )] ≥ EP [log q(X, Y )]
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coincides with the condition in (69). Thus, expanding (68) in
terms of types, we obtain

pe,0 = c0

∑

PU XY

P

[(
U, X, Y

) ∈ T n(PU XY )
]

min

{
1,

(M0 − 1)
∑

P̃U XY ∈T0,n (PU XY )

P

[(
U, y

) ∈ T n(P̃UY )
]

P

[ ⋃

j1, j2

{(
u, X

( j1, j2), y
) ∈ T n(P̃U XY )

}]}
, (71)

where we write (u, y) to denote an arbitrary pair such that
y ∈ T n(PY ) and (u, y) ∈ T n(P̃UY ); note that these sequences
implicitly depend on PU XY and P̃U XY .

Similarly to the discussion following (61), we observe that
(
u, X

( j1, j2)
, y
) ∈ T n(P̃U XY ) if and only if

(
X

( ju)
u , yu(u)

) ∈
T nu (P̃XY |U (·, ·|u)) for u = 1, 2. Thus, applying Lemma 2 in
Appendix A with Z1( j1) = X( j1)

1 , Z2( j2) = X( j2)
2 , A1 =

T n1
y1(u)(P̃XY |U (·, ·|1)), A2 = T n2

y2(u)(P̃XY |U (·, ·|2)), and A ={
(X1, X2) : Xu ∈ T nu

yu (u)(P̃XY |U (·, ·|u)), u = 1, 2
}
, we obtain

P

[ ⋃

j1, j2

{(
u, X

( j1, j2), y
) ∈ T n(P̃U XY )

}]
(72)

= ζ ′
0 min

{
1, min

u=1,2
M1uP

[(
Xu, yu(u)

)∈ T nu
(
P̃XY |U (·, ·|u)

)]
,

M11 M12P

[ ⋂

u=1,2

{(
Xu , yu(u)

) ∈ T nu
(
P̃XY |U (·, ·|u)

)}]}
,

(73)

where ζ ′
0 ∈ [ 1

4 , 1]. This is a minimization of four terms
corresponding to the four subsets of {1, 2}.

Substituting (73) into (71) and applying standard properties
of types [14, Ch. 2], we obtain

lim
n→∞ − 1

n
log pe,0

= min
PU XY :PU X =QU X

min
P̃U XY ∈T0(PU XY )

D(PU XY ‖QU X × W )

+
[

IP̃ (U ; Y ) +
[

max
K⊆U ,K �=∅

∑

u∈K
QU (u)

×
(

IP̃ (X; Y |U = u) − R1u

)]+
− R0

]+
, (74)

where we have replaced the minimizations over types by
minimizations over all distributions in the same way as the
proof of Theorem 1. By a similar argument to [2, Lemma 1],
the right-hand side of (74), with only the second minimization
kept, is continuous as a function of PU XY when restricted to
distributions whose support is the same as that of QU X × W .
It follows that the right-hand side of (74) is positive
whenever (66) holds with strict inequality.

The proof of Theorem 7 gives an exponentially tight
analysis yielding the exponent in (74). This does not prove
that the resulting rate is ensemble-tight, since a subexpone-
ntial decay of the error probability to zero is possible
in principle. However, the changes required to prove the
tightness of the rate are minimal. We saw that each condition

in (64) corresponds to an error event with independent
constant-composition codewords and a reduced block length,
and hence it follows from existing analyses [4], [6] that
pe,1 → 1 when R11 fails this condition, and analogously for
pe,2 and R12. To see that pe,0 → 1 when (66) fails, we let
Ei be the event that qn(X (i, j1, j2), Y ) ≥ qn(X, Y ) for some
( j1, j2), let I0(PU XY ) denote the right-hand side of (66) with
PU XY in place of Q1 × Q2 × W , and write

pe,0 = P

[⋃

i �=1

Ei

]
(75)

=
∑

PU XY

P[(U, X, Y ) ∈ T n(PU XY )]

×
(

1 − (
1 − P[E2|PU XY ])M0−1

)
(76)

≥
∑

PU XY

P[(U, X, Y ) ∈ T n(PU XY )]

×
(

1 − (
1 − p0(n)e−nI0(PU XY ))M0−1

)
, (77)

where (76) follows since the events Ei are conditionally
i.i.d. given that (U, X, Y ) has a given joint type PU XY ,
and (77) holds for some subexponential factor p0(n) by (74).
Next, we observe from the law of large numbers that the
joint type of (U, X, Y ) approaches Q1 × Q2 × W with high
probability as n → ∞. Moreover, by the same argument as
that of the LM rate [3, Lemma 1], I0(PU XY ) is continuous
in PU XY . Combining these observations, we readily obtain
from (77) that pe,0 → 1 if R0 > I0(Q1 ×Q2 ×W ), as desired.

D. Comparison to Standard Superposition Coding

In this subsection, we show that the conditions in (65)–(66)
can be weakened to (52)–(53) upon identifying

R1 =
∑

u

QU (u)R1u . (78)

Proposition 2: For any finite auxiliary alphabet U and
input distribution QU X , the rate maxR0,R11,...,R1|U | R0 +∑

u QU (u)R1u resulting from Theorem 7 is at least as high
as the rate maxR0,R1 R0 + R1 resulting from Theorem 5.

Proof: We begin by weakening (66) to (53). We lower
bound the right-hand side of (66) by replacing the maximum
over K by the particular choice K = U , yielding

R0 ≤ min
P̃U XY ∈T0(QU X ×W )

IP̃ (U ; Y ) +
[

IP̃ (X; Y |U) − R1

]+
,

(79)

where we have used (78) and the definition of conditional
mutual information. We can weaken (79) to (53) using the
chain rule for mutual information, and noting that (79)
is always satisfied when the minimizing P̃U XY satisfies
IP̃ (U ; Y ) > R0.

Next, we show that highest value of R1 permitted by the |U |
conditions in (65), denoted by R∗

1 , can be lower bounded by
the right-hand side of (52). From (78) and (65), we have

R∗
1 =

∑

u

QU (u)IP̃∗(X; Y |U = u), (80)
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where P̃∗
XY |U (·, ·|u) is the distribution that achieves the

minimum in (5) under QX |U (·|u). Defining the joint
distribution P̃∗

U XY accordingly with P̃∗
U = QU , we can

write (80) as

R∗
1 = IP̃∗(X; Y |U). (81)

Therefore, we can lower bound R∗
1 by the right-hand side

of (52) provided that P̃∗
U XY ∈ T1(QU X × W ). The constraints

P̃∗
U X = QU X and P̃∗

UY = PUY in (50) are satisfied since we
have chosen P̃∗

U = QU , and since the constraints in (5) imply
P̃∗

X |U (·|u) = QX |U (·|u) and P̃∗
Y |U (·|u) = PY |U (·|u) for all

u ∈ U . The constraint EP̃∗ [log q(X, Y )] ≥ EP [log q(X, Y )] is
satisfied since, from (5), we have EP̃∗ [log q(X, Y )|U = u] ≥
EP [log q(X, Y )|U = u] for all u ∈ U .

Intuitively, one can think of the gain of the refined
superposition coding ensemble as being due to a stronger
dependence among the codewords. For standard SC, the
codewords {X(i, j )}M1

j=1 are conditionally independent given
U (i), whereas for refined superposition coding this is generally
not the case. The additional structure leads to further
constraints in the minimizations, and maxima over more terms
in the objective functions, both leading to higher overall rates.

It should be noted, however, that the exponents for standard
superposition coding may be higher, particularly at low to
moderate rates. In particular, we noted in the proof of
Theorem 7 that the type-1 and type-2 error events are
equivalent to a single-user channel, but the corresponding
block lengths are only n1 and n2. Thus, if either QU (1) or
QU (2) is close to zero, the corresponding exponent is small.

Finally, we recall that the standard superposition coding rate
is at least as high as Lapidoth’s expurgated parallel coding
rate [9], though no example of strict improvement is known.

E. Dual Expressions and General Alphabets

In this subsection, we present a dual expression for the
rate given in Theorem 7 in the case that |U | = 2, as well
as extending the result to general alphabets X and Y .

With U = {1, 2}, the condition in (66) is given by

R0 ≤ min
P̃U XY ∈T0(QU X ×W )

IP̃ (U ; Y )

+
[
max

{
QU (1)

(
IP̃ (X; Y |U = 1) − R11

)
,

QU (2)
(
IP̃ (X; Y |U =2)− R12

)
, IP̃ (X; Y |U)− R1

}]+
,

(82)

where

R1 �
∑

u

QU (u)R1u . (83)

Since the right-hand side of (65) is the LM rate, we can use
the dual expression in (6). The main result of this subsection
gives a dual expression for (82), and extends its validity to
memoryless MACs with infinite or continuous alphabets.

We again use cost-constrained random coding. We consider
the ensemble given in (58), with PXu given by

PXu (xu) = 1

μu,nu

nu∏

i=1

QX |U (xu,i |ui )1
{

xu ∈ Du,nu

}
, (84)

where

Du,nu �
{

xu :
∣∣∣∣∣

1

nu

nu∑

i=1

au,l(xu,i )− φu,l

∣∣∣∣∣≤
δ

nu
, l =1, . . . , Lu

}

(85)

φu,l � EQu

[
au,l(Xu)|U = u

]
, (86)

and where μu,nu , {au,l} and δ are defined analogously to (32),
and nu is defined in (57).

Theorem 8: The condition in (82) holds if and only if the
following holds for at least one of u = 1, 2:

R0 ≤ sup
s≥0,ρ1∈[0,1],ρ2∈[0,1],a(·,·)

−
∑

u′=1,2

ρu(u′)QU (u′)R1u′

+ E

[
log

(
q(X, Y )su(U )ea(U,X)

)ρu (U )

E

[(
E
[
q(X , Y )su (U)ea(U ,X)

∣∣U
])ρu (U)∣∣∣Y

]
]

(87)

where

ρ1(1) = ρ1, ρ1(2) = ρ1ρ2, s1(1) = ρ2s, s1(2) = s (88)

ρ2(1) = ρ1ρ2, ρ2(2) = ρ2, s2(1) = s, s2(2) = ρ1s (89)

and (U, X, Y, U , X) ∼ QU X (u, x)W (y|x)QU X (u, x).
Moreover, for any mismatched memoryless channel

(possibly having infinite or continuous alphabets) and input
distribution QU X (U = 1, 2), the rate R = R0 +∑

u=1,2 QU (u)R1u is achievable for any triplet (R0, R11, R12)
satisfying (65) (with ILM defined in (6)) and (87) for at
least one of u = 1, 2. The supremum in (6) is subject
to EQ [a(X)2] < ∞, and that in (87) is subject to
EQ [a(U, X)2] < ∞. Furthermore, the rate is achievable using
cost-constrained coding in (84) with L1 = L2 = 2.

Proof: Both the proof of the primal-dual equivalence is
and the direct derivation of (87) are given in Appendix D. The
choice L1 = L2 = 2 suffices since for u = 1, 2, one cost is
required for (65) and another for (87). It suffices to let the
cost functions for (87) with u = 1 and u = 2 coincide, since
the theorem only requires that one of the two hold.

The condition in (87) bears a strong resemblance to the
standard superposition coding condition in (55); the latter can
be recovered by setting ρ2 = 1 in the condition with u = 1,
or or ρ1 = 1 in the condition with u = 2.

IV. NUMERICAL EXAMPLES

A. Error Exponent for the Multiple-Access Channel

We revisit the parallel BSC example given by Lapidoth [6],
consisting of binary inputs X1 = X2 = {0, 1} and a
pair of binary outputs Y = {0, 1}2. The output is given
by Y = (Y1, Y2), where for ν = 1, 2, Yν is generated
by passing Xν through a binary symmetric channel (BSC)
with some crossover probability δν < 0.5. The mismatched
decoder assumes that both crossover probabilities are equal to
δ < 0.5. The decoder assumes that both crossover probabilities
are equal. The corresponding decoding rule is equivalent to
minimizing sum of t1 and t2, where tν is the number of bit
flips from the input sequence xν to the output sequence yν .
As noted in [6], this decision rule is in fact equivalent to ML.
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Fig. 2. Error exponents Ecc
r,1 (dotted), Ecc

r,2 (dash-dot), Ecc
r,12 (solid) and Ecc′

r,12
(dashed) for the parallel channel using δ1 = 0.05, δ2 = 0.25 and equiprobable
input distributions on {0, 1}. The rate pair is given by (R1, R2) = (αC1, αC2).

We let both Q1 and Q2 be equiprobable on {0, 1}. With this
choice, it was shown in [6] that the right-hand side of (30) is
no greater than

2

(
1 − H2

(
δ1 + δ2

2

))
bits/use, (90)

where H2(·) is the binary entropy function in bits. In fact,
this is the same rate that would be obtained by considering
the corresponding single-user channel with X = (X1, X2),
and applying the LM rate with a uniform distribution on the
quaternary input alphabet [6].

On the other hand, the refined condition in (29) can be used
to prove the achievability of any (R1, R2) within the rectangle
with corners (0, 0) and (C1, C2), where Cν � 1 − H2(δν) [6].
This implies that the mismatched capacity region coincides
with the (matched) capacity region.

We evaluate the error exponents using the optimization
software YALMIP [29]. Figure 2 plots each of the exponents as
a function of α, where the rate pair is (R1, R2) = (αC1, αC2).
While the overall error exponent Ecc

r ( Q, R1, R2) in (26) is
unchanged at low to moderate values of α when Ecc′

r,12 in (27)
is used in place of Ecc

r,12, this is not true for high values of α.

Furthermore, consistent with the preceding discussion, Ecc′
r,12 is

non-zero only for α < 0.865, whereas Ecc
r,12 is positive for all

α < 1. The fact that Ecc
r,12 and Ecc′

r,12 coincide at low values of
α is consistent with [17, Corollary 5], which states that Ecc′

r,12
is ensemble-tight at low rates.

B. Achievable Rates for Single-User Channels

In this subsection, we provide examples comparing the two
versions of superposition coding and the LM rate. We do not
explicitly give values for Lapidoth’s rate [6], since for each
example given, we found it to coincide with the superposition
coding rate (see Theorem 5).

1) Sum Channel: We first consider a sum-channel analog
of the parallel-channel example given in Section IV-A. Given
two channels (W1, W2) respectively defined on the alphabets
(X1,Y1) and (X2,Y2), the sum channel is defined to be
the channel W (y|x) with |X | = |X1| + |X2| and |Y| =
|Y1| + |Y2| such that one of the two subchannels is used
on each transmission [30]. One can similarly combine two
metrics q1(x1, y1) and q2(x2, y2) to form a sum metric q(x, y).
Assuming without loss of generality that X1 and X2 are
disjoint and Y1 and Y2 are disjoint, we have

q(x, y) =

⎧
⎪⎨

⎪⎩

q1(x1, y1) x1 ∈ X1 and y1 ∈ Y1

q2(x2, y2) x2 ∈ X2 and y2 ∈ Y2

0 otherwise,

(91)

and similarly for W (y|x). Let Q̂1 and Q̂2 be the distributions
that maximize the LM rate in (5) on the respective
subchannels. We set U = {1, 2}, QX |U (·|1) = (Q̂1, 0)

and QX |U (·|2) = (0, Q̂2), where 0 denotes the zero vector.
We leave QU to be specified.

Combining the constraints P̃U X = QU X and
EP̃ [log q(X, Y )] ≥ EP [log q(X, Y )] in (49), we find
that the minimizing P̃U XY in (66) only has non-zero values
for (u, x, y) such that (i) u = 1, x ∈ X1 and y ∈ Y1, or
(ii) u = 2, x ∈ X2 and y ∈ Y2. It follows that U is a
deterministic function of Y under the minimizing P̃U XY ,
and hence

IP̃ (U ; Y ) = H (QU ) − HP̃(U |Y ) = H (QU ). (92)

Therefore, the right-hand side of (66) is lower bounded by
H (QU ). Using (64), it follows that we can achieve the rate

H (QU ) + QU (1)I LM
1 (Q̂1) + QU (2)I LM

2 (Q̂2)

= log
(
eI LM

1 (Q̂1) + eI LM
2 (Q̂2)

)
(93)

where I LM
ν is the LM rate for subchannel ν, and the equality

follows by optimizing QU in the same way as [30, Sec. 16],

yielding QU (1) = eI LM
1 (Q̂1)

eI LM
1 (Q̂1)+eI LM

2 (Q̂2)
. Using similar arguments

to [6], it can be shown that the LM rate with an optimized
input distribution can be strictly less than (93) even for simple
examples (e.g. binary symmetric subchannels).

2) Zero Undetected Error Capacity: It was shown
by Csiszár and Narayan [3] that two special cases of
the mismatched capacity are the zero-undetected erasures
capacity [31] and the zero-error capacity [32]. Here we
consider the zero-undetected erasures capacity, defined to be
the highest achievable rate in the case that the decoder is
required to know with certainty whether or not an error has
occurred. For any DMC, the zero-undetected erasures capacity
is equal to the mismatched capacity under the decoding metric
q(x, y) = 1{W (y|x) > 0} [3].

We consider an example from [33], where X = Y =
{0, 1, 2}, and the channel is described by the entries of

W =
⎡

⎣
0.75 0.25 0

0 0.75 0.25
0.25 0 0.75

⎤

⎦ (94)

where x indexes the rows and y indexes the columns.
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Using an exhaustive search to three decimal places, we
found the optimized LM rate to be R∗

LM = 0.599 bits/use,
using the input distribution Q = (0.449, 0.551, 0). It was
stated in [33] that the rate obtained by considering the
second-order product of the channel and metric (see [3]) is
equal to R∗

LM2 = 0.616 bits/use. Using local optimization
techniques, we verified that this rate is achieved with Q =
(0, 0.250, 0, 0.319, 0, 0, 0, 0.181, 0.250), where the order of
the inputs is (0, 0), (0, 1), (0, 2), (1, 0), . . . , (2, 2).

The global optimization of (52)–(53) over U and QU X

appears to be difficult. Setting |U | = 2 and applying local
optimization techniques using a number of starting points,
we obtained an achievable rate of R∗

sc = 0.695 bits/use,
with QU = (0.645, 0.355), QX |U (·|1) = (0.3, 0.7, 0) and
QX |U (·|2) = (0, 0, 1). Thus, superposition coding not only
yields an improvement over the single-letter LM rate, but also
over the two-letter version. Note that since the decoding metric
is the erasures-only metric, applying the LM rate to the k-th
order product channel achieves the mismatched capacity in the
limit as k → ∞ [3]; however, in this example, a significant
gap remains for k = 2.

3) A Case Where Refined Superposition Coding
Outperforms Standard Superposition Coding: Here we
consider the channel and decoding metric described by the
entries of

W =

⎡

⎢⎢⎣

0.99 0.01 0 0
0.01 0.99 0 0
0.1 0.1 0.7 0.1
0.1 0.1 0.1 0.7

⎤

⎥⎥⎦ (95)

q =

⎡
⎢⎢⎣

1 0.5 0 0
0.5 1 0 0
0.05 0.15 1 0.05
0.15 0.05 0.5 1

⎤
⎥⎥⎦. (96)

We have intentionally chosen a highly asymmetric channel and
metric, since such examples often yield larger gaps between
the various achievable rates. Using an exhaustive search to
three decimal places, we found the optimized LM rate to
be R∗

LM = 1.111 bits/use, which is achieved by the input
distribution Q∗

X = (0.403, 0.418, 0, 0.179).
Setting |U | = 2 and applying local optimization

techniques using a number of starting points, we obtained
an achievable rate of R∗

rsc = 1.313 bits/use, with QU =
(0.698, 0.302), QX |U (·|1) = (0.5, 0.5, 0, 0) and QX |U (·|u) =
(0, 0, 0.528, 0.472). We denote the corresponding input

distribution by Q(1)
U X .

Applying similar techniques to the standard superposition
coding rate, we obtained an achievable rate of
R∗

sc = 1.236 bits/use, with QU = (0.830, 0.170),
QX |U (·|1) = (0.435, 0.450, 0.115, 0) and QX |U (·|2) =
(0, 0, 0, 1). We denote the corresponding input distribution
by Q(2)

U X .
The achievable rates for this example are summarized in

Table I, where Q(LM)
U X denotes the distribution in which U

is deterministic and the X-marginal maximizes the LM rate.
While the achievable rate of Theorem 7 coincides with that
of Theorem 5 under Q(2)

U X , the former is significantly higher

TABLE I

ACHIEVABLE RATES (BITS) FOR THE MISMATCHED CHANNEL (95)–(96)

under Q(1)
U X . Both types of superposition coding yield a strict

improvement over the LM rate.
Our parameters may not be globally optimal, and thus we

cannot conclude from this example that refined superposition
coding yields a strict improvement over standard superposition
coding (and hence over Lapidoth’s rate [6]) after optimizing
U and QU X . However, improvements for a fixed set of
random-coding parameters are still of interest due to the fact
that global optimizations are prohibitively complex in general.

V. CONCLUSION

We have provided techniques for studying multiuser
random-coding ensembles for channel coding problems with
mismatched decoding. The key initial step in each case
is the application of a refined bound on the probability
of a multiply-indexed union (cf. Appendix A), from which
one can apply constant-composition coding and the method
of types to obtain primal expressions and prove ensemble
tightness, or cost-constrained random coding to obtain dual
expressions and continuous-alphabet generalizations. We have
demonstrated our techniques on both the mismatched MAC
and the single-user channel with refined superposition coding,
with the latter providing a new achievable rate at least as good
as all previous rates in the literature.

After the initial preparation of this work, the superposition
coding rate from Theorems 5–6 was used to find an
example for which the LM rate is strictly smaller than
the mismatched capacity for a binary-input DMC [34], thus
providing a counter-example to the converse reported in [35].
Another work building on this paper is [36], which considers
the matched relay channel, and shows that the utility of our
refined union bounds is not restricted to mismatched decoders.

APPENDIX A
UPPER AND LOWER BOUNDS ON THE PROBABILITY

OF A MULTIPLY-INDEXED UNION

Bounds on the random-coding error probability in channel
coding problems are often obtained using the truncated union
bound, which states that for any set of events {Ai }N

i=1,

P

[⋃

i

Ai

]
≤ min

{
1,
∑

i

P[Ai ]
}
. (A.1)

In this paper, we are also interested in lower bounds on the
probability of a union, which are used to prove ensemble
tightness results. In particular, we make use of de Caen’s lower
bound [37], which states that

P

[⋃

i

Ai

]
≥
∑

i

P[Ai ]2
∑

i ′ P[Ai ∩ Ai ′ ] . (A.2)
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In the case that the events are pairwise independent and
identically distributed, (A.2) proves the tightness of (A.1) to
within a factor of 1

2 ; see the proof of [38, Th. 1].
In this section, we provide a number of upper and lower

bounds on the probability of a multiply-indexed union.
In several cases of interest, the upper and lower bounds
coincide to within a constant factor, and generalize the
above-mentioned tightness result of [38] to certain settings
where pairwise independence need not hold.

Lemma 1: Let {Z1(i)}N1
i=1 and {Z2( j)}N2

j=1 be independent
sequences of identically distributed random variables on the
alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1 and
Z2( j) ∼ PZ2 . For any set A ⊆ Z1 × Z2, we have:

1) A general upper bound is given by

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≤ min

{
1, N1E

[
min

{
1, N2P

[
(Z1, Z2) ∈ A

∣∣Z1
]}]

,

N2E

[
min

{
1, N1P

[
(Z1, Z2) ∈ A

∣∣Z2
]}]}

, (A.3)

where (Z1, Z2) ∼ PZ1 × PZ2 .
2) If {Z1(i)}N1

i=1 and {Z2( j)}N2
j=1 are pairwise independent,

then we have the lower bound

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≥ 1

4
min

{
1, N1

P
[
(Z1, Z2) ∈ A

]2

P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′

2) ∈ A
] ,

N2
P
[
(Z1, Z2) ∈ A

]2

P
[
(Z1, Z2) ∈ A ∩ (Z ′

1, Z2) ∈ A
] ,

N1 N2P
[
(Z1, Z2) ∈ A

]}
, (A.4)

where (Z1, Z ′
1, Z2, Z ′

2) ∼ PZ1(z1)PZ1(z
′
1)PZ2(z2)PZ2(z

′
2).

Proof: We first prove (A.3). Applying the union bound to
the union over i gives

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≤ N1P

[⋃

j

{(
Z1, Z2( j)

) ∈ A
}]

(A.5)

= N1E

[
P

[⋃

j

{(
Z1, Z2( j)

) ∈ A
}∣∣∣∣Z1

]]
. (A.6)

Applying the truncated union bound to the union over j , we
recover the second term in the outer minimization in (A.3).
The third term is obtained similarly by applying the union
bounds in the opposite order, and the first term is trivial.

To prove (A.4), we make use of de Caen’s bound in (A.2).
Noting by symmetry that each term in the outer summation is
equal, and splitting the inner summation according to which

of the (i, j) indices coincide with (i ′, j ′), we obtain

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≥ N1 N2P
[
(Z1, Z2) ∈ A

]2

×
(

(N1 − 1)(N2 − 1)P
[
(Z1, Z2) ∈ A

]2

+ (N2 − 1)P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′

2) ∈ A
]

+ (N1 − 1)P
[
(Z1, Z2) ∈ A ∩ (Z ′

1, Z2) ∈ A
]

+ P
[
(Z1, Z2) ∈ A

])−1

. (A.7)

The lemma follows by upper bounding Nν − 1 by Nν for
ν = 1, 2, and upper bounding the four terms in the (·)−1 by
four times the maximum of those terms.

The following lemma gives conditions under which a
weakened version of (A.3) matches (A.4) to within a factor of
four. Recall that νc denotes the item in {1, 2} differing from ν.

Lemma 2: Let {Z1(i)}N1
i=1 and {Z2( j)}N2

j=1 be independent
sequences of identically distributed random variables on the
alphabets Z1 and Z2 respectively, with Z1(i) ∼ PZ1 and
Z2( j) ∼ PZ2 . Fix a set A ⊆ Z1 × Z2, and define

Aν �
{

zν ∈ Zν : (z1, z2) ∈ A for some zνc ∈ Zνc

}
(A.8)

for ν = 1, 2.

1) A general upper bound is given by

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≤ min
{

1, N1P
[
Z1 ∈ A1

]
, N2P

[
Z2 ∈ A2

]
,

N1 N2P
[
(Z1, Z2) ∈ A

]}
, (A.9)

where (Z1, Z2) ∼ PZ1 × PZ2 .
2) If (i) {Z1(i)}N1

i=1 are pairwise independent,
(ii) {Z2( j)}N2

j=1 are pairwise independent,
(iii) P

[
(z1, Z2) ∈ A

]
is the same for all z1 ∈ A1, and

(iv) P
[
(Z1, z2) ∈ A

]
is the same for all z2 ∈ A2, then

P

[⋃

i, j

{(
Z1(i), Z2( j)

) ∈ A
}]

≥ 1

4
min

{
1, N1P

[
Z1 ∈ A1

]
, N2P

[
Z2 ∈ A2

]
,

N1 N2P
[
(Z1, Z2) ∈ A

]}
. (A.10)

Proof: We obtain (A.9) by weakening (A.3) in multiple
ways. The second term in (A.9) follows since the inner
probability in the second term of (A.3) is zero whenever
P[Z1 /∈ A], and since min{1, ζ } ≤ 1. The third term in (A.9)
is obtained similarly, and the fourth term follows from the fact
that min{1, ζ } ≤ ζ .

The lower bound in (A.10) follows from (A.4), and since
the additional assumptions in the second part of the lemma
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statement imply

P
[
(Z1, Z2) ∈ A

]2

P
[
(Z1, Z2) ∈ A ∩ (Z1, Z ′

2) ∈ A
]

= P
[
Z1 ∈ A1

]2
P
[
(z1, Z2) ∈ A

]2

P
[
Z1 ∈ A1

]
P
[
(z1, Z2) ∈ A

]2 , (A.11)

= P
[
Z1 ∈ A1

]
, (A.12)

where z1 is an arbitrary element of A1. The third term in the
minimization in (A.4) can be handled similarly.

A generalization of Lemma 2 to the probability of a union
indexed by K values can be found in [13, Appendix D].

APPENDIX B
EQUIVALENT FORMS OF CONVEX

OPTIMIZATION PROBLEMS

The achievable rates and error exponents derived in this
paper are presented in both primal and dual forms, analogously
to the LM rate in (5)–(6). The corresponding proofs of
equivalence are more involved than that of the LM rate
(see [4]). Here we provide two lemmas that are useful in
proving the equivalences. The following lemma generalizes
the result that (5) and (6) are equivalent, and is proved using
Lagrange duality [39, Ch. 5].

Lemma 3: Fix the finite alphabets Z1 and Z2, the
non-negative functions f (z1, z2) and g(z1, z2), the
distributions PZ1 ∈ P(Z1) and PZ2 ∈ P(Z2), and a
constant β. Then

min
P̃Z1 Z2 :P̃Z1=PZ1 , P̃Z2=PZ2 ,

EP̃ [log f (Z1,Z2)]≥β

IP̃ (Z1; Z2) − EP̃ [log g(Z1, Z2)]

(B.1)

is equal to

sup
λ≥0,μ1(·)

∑

z1

PZ1(z1)μ1(z1) + λβ

−
∑

z2

PZ2(z2) log
∑

z1

PZ1(z1) f (z1, z2)
λg(z1, z2)e

μ1(z1),

(B.2)

where the supremum over μ1(·) is taken over all real-valued
functions on Z1.

Proof: The Lagrangian [39, Sec. 5.1.1] of the optimization
problem in (B.1) is given by

L =
∑

z1,z2

P̃Z1 Z2(z1, z2)

(
log

P̃(z1, z2)

PZ1(z1)PZ2(z2)

−log g(z1, z2)−λ log f (z1, z2)

)

+
∑

z1

μ1(z1)
(
PZ1(z1) − P̃Z1(z1)

)

+
∑

z2

μ2(z2)
(
PZ2(z2) − P̃Z2(z2)

)+ λβ, (B.3)

where λ ≥ 0, μ1(·) and μ2(·) are Lagrange multipliers.
Since the objective in (B.1) is convex and the constraints
are affine, the optimal value is equal to L for some

choice of P̃Z1 Z2 and the Lagrange multipliers satisfying the
Karush-Kuhn-Tucker (KKT) conditions [39, Sec. 5.5.3].

We proceed to simplify (B.3) using the KKT conditions.
Setting ∂L

∂ P̃(z1,z2)
= 0 yields

1 + log
P̃Z1 Z2(z1, z2)

PZ1(z1)PZ2(z2) f (z1, z2)λg(z1, z2)
− μ1(z1)

− μ2(z2) = 0. (B.4)

Solving for P̃Z1 Z2(z1, z2) applying the constraint P̃Z2 = PZ2 ,
and then solving for μ2(z2), we obtain

μ2(z2) = 1 − log
∑

z1

PZ1(z1) f (z1, z2)
λg(z1, z2)e

μ1(z1).

(B.5)

Substituting (B.4) into (B.3) yields

L = −1 +
∑

z1

μ1(z1)PZ1(z1) +
∑

z2

μ2(z2)PZ2(z2) + λβ,

(B.6)

and applying (B.5) yields (B.2) with the supremum omitted.
It follows that (B.2) is an upper bound to (B.1).

To obtain a matching lower bound, we make use
of the log-sum inequality [40, Th. 2.7.1] similarly
to [4, Appendix A]. For any P̃Z1 Z2 satisfying the constraints
in (B.1), we can lower bound the objective in (B.1) as
follows:
∑

z1,z2

P̃Z1 Z2(z1, z2) log
P̃(z1, z2)

PZ1(z1)PZ2(z2)g(z1, z2)
(B.7)

≥
∑

z1,z2

P̃Z1 Z2(z1, z2)

× log
P̃(z1, z2)

PZ1(z1)PZ2(z2) f (z1, z2)λg(z1, z2)
+ λβ (B.8)

=
∑

z1

PZ1(z1)μ1(z1) + λβ +
∑

z1,z2

P̃Z1 Z2(z1, z2)

× log
P̃(z1, z2)

PZ1(z1)PZ2(z2) f (z1, z2)λg(z1, z2)eμ1(z1)
,

(B.9)

where (B.8) holds for any λ ≥ 0 due to the constraint
EP̃ [log f (Z1, Z2)] ≥ β, and (B.9) holds for any μ1(·) by an
expansion of the logarithm. Applying the log-sum inequality,
we can lower bound (B.9) by the objective in (B.2). Since
λ ≥ 0 and μ1(·) are arbitrary, the proof is complete.

When using Lemma 3, we will typically be interested the
case that either g(·, ·) = 1, or f (·, ·) = 1 and β = 0.

The following lemma will allow certain convex optimization
problems to be expressed in a form where, after some
manipulations, Lemma 3 can be applied.

Lemma 4: Fix a positive integer d and let D be a convex
subset of R

d . Let f (z), g(z), g1(z) and g2(z) be convex
functions mapping R

d to R such that

g1(z) + g2(z) ≤ g(z) (B.10)

for all z ∈ D. Then

min
z∈D

f (z) +
[

max
{
g1(z), g2(z), g(z)

}]+
(B.11)
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is equal to

max

{
min
z∈D

f (z) +
[

max
{
g1(z), g(z)

}]+
,

min
z∈D

f (z) +
[

max
{

g2(z), g(z)
}]+}

. (B.12)

Proof: We define the following functions (ν = 1, 2):


0(z) � f (z) + [
g(z)

]+ (B.13)


ν(z) � f (z) + [
max

{
gν(z), g(z)

}]+
. (B.14)

Since f (·), g(·), g1(·) and g2(·) are convex by assumption,
it follows from the composition rules in [39, Sec. 3.2.4] that

0(·), 
1(·) and 
2(·) are also convex.

We wish to show that

min
z∈D

max
{

1(z),
2(z)

} = max

{
min
z∈D


1(z), min
z∈D


2(z)
}
.

(B.15)

We define the following regions for ν = 1, 2:

Rν = {
z : 
ν(z) > 
0(z)

}
. (B.16)

The key observation is that R1 and R2 are disjoint. To see this,
we observe from (B.13)–(B.14) that any z ∈ R1 ∩R2 satisfies
g1(z) > g(z) and g2(z) > g(z). Combined with (B.10),
these imply g1(z) < 0 and g2(z) < 0, and it follows from
(B.13)–(B.14) that 
0(z) = 
1(z) = 
2(z), in contradiction
with the assumption that z ∈ R1∩R2. Thus, R1∩R2 is empty,
which implies that g1(z) and g2(z) cannot simultaneously be
the unique maximizers in (B.14) for both ν = 1 and ν = 2.
Combining this with (B.13), we obtain


0(z) = min
{

1(z),
2(z)

}
. (B.17)

To prove (B.15), we use a proof by contradiction. Let the
left-hand side and right-hand side be denoted by f ∗ and f̃ ∗
respectively. The inequality f ∗ ≥ f̃ ∗ holds by definition, so
we assume that f ∗ > f̃ ∗. Let z∗

1 and z∗
2 minimize 
1 and 
2

respectively on the right-hand side of (B.15), so that

f̃ ∗ = max
{

1(z∗

1),
2(z∗
2)
}
. (B.18)

The assumption f ∗ > f̃ ∗ implies that


2(z∗
1) > 
1(z∗

1) (B.19)


1(z∗
2) > 
2(z∗

2). (B.20)

Next, we define


̂ν(λ) � 
ν

(
λz∗

1 + (1 − λ)z∗
2

)
(B.21)

for λ ∈ [0, 1] and ν = 0, 1, 2. Since any convex
function is also convex when restricted to a straight line
[39, Sec. 3.1.1], it follows that 
̂0, 
̂1 and 
̂2 are convex
in λ. From (B.19)–(B.20), we have


̂2(1) > 
̂1(1) (B.22)


̂1(0) > 
̂2(0). (B.23)

Since 
̂1 and 
̂2 are convex, they are also continuous (at least
in the region that they are finite), and it follows that the two
must intersect somewhere in (0, 1), say at λ∗. Therefore,


̂0(λ
∗) = min

{

̂1(λ

∗), 
̂2(λ
∗)
}

(B.24)

= max
{

̂1(λ

∗), 
̂2(λ
∗)
}

(B.25)

≥ min
z∈D

max
{

1(z),
2(z)

}
(B.26)

= f ∗, (B.27)

where (B.24) follows from (B.17). Finally, we have the
following contradiction: (i) Combining (B.27) with the
assumption that f ∗ > f̃ ∗, we have


̂0(λ
∗) > f̃ ∗ = max{
̂1(1), 
̂2(0)}, (B.28)

where the equality follows from (B.18); (ii) From (B.17),
we have 
̂0(λ) = min{
̂1(λ), 
̂2(λ)}, and it follows
from (B.22)–(B.23) that 
̂0(1) = 
̂1(1) and 
̂0(0) = 
̂2(0).
Using the convexity of 
̂0 and Jensen’s inequality, we have


̂0(λ
∗) ≤ λ∗
̂1(1) + (1 − λ∗)
̂2(0) (B.29)

≤ max{
̂1(1), 
̂2(0)}. (B.30)

APPENDIX C
MULTIPLE-ACCESS CHANNEL PROOFS

A. Preliminary Lemma for Proving Theorem 3

The following lemma expresses (29) in a form that is more
amenable to Lagrange duality techniques.

Lemma 5: The achievable rate condition in (29) holds if
the following holds for at least one of ν = 1, 2:

R1 + R2 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

IP̃ (Xν;Y )≤Rν

D(P̃X1 X2Y ‖Q1 × Q2 × PY ).

(C.1)
Proof: We first write the condition in (29) as

0 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

max
{

D(P̃X1 X2Y ‖Q1 × Q2 × PY ) − (R1 + R2),

IP̃ (X1; Y ) − R1, IP̃ (X2; Y ) − R2
}
, (C.2)

where the equivalence is seen by noting that this condition is
always satisfied when the minimizer satisfies IP̃ (X1; Y ) > R1
or IP̃ (X2; Y ) > R2. Next, we claim that this condition is
equivalent to the following holding for at least one of ν = 1, 2:

0 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

max
{

D(P̃X1 X2Y ‖Q1×Q2×PY )−(R1+ R2), IP̃ (Xν; Y )− Rν

}
.

(C.3)

This is seen by applying Lemma 4 with the following
identifications (ν = 1, 2):

f (z) = 0 (C.4)

g(z) = D
(
P̃X1 X2Y ‖Q1 × Q2 × PY

)− R1 − R2 (C.5)

gν(z) = IP̃ (Xν; Y ) − Rν . (C.6)
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From the last two lines and the identity

D
(
P̃X1 X2Y ‖Q1 × Q2 × PY

)

= IP̃ (X1; Y ) + IP̃ (X2; Y ) + IP̃ (X1; X2|Y ), (C.7)

which holds under the constraints present in the definition
of T12 in (14), we see that the condition in (B.10) is satisfied.

Finally, the lemma follows from (C.3) by reversing the step
used to obtain (C.2).

B. Proof of First Part of Theorem 3

Each expression in the theorem statement is derived
similarly, so we focus on (35). We claim that (C.1) holds if
and only if

R1 ≤ max
ρ2∈[0,1] min

P̃X1 X2Y ∈T12(PX1 X2Y )
IP̃ (X1; Y )

+ ρ2 IP̃ (X2; X1, Y ) − ρ2 R2, (C.8)

where here and in the remainder of the proof we write
PX1 X2Y � Q1 × Q2 × W . To see this, we first note that by
the identity

D
(
PX1 X2Y ‖Q1 × Q2 × PY

) = IP (X1; Y ) + IP (X2; X1, Y ),

(C.9)

equation (C.3) (with ν = 1) is equivalent to

R1 ≤ min
P̃X1 X2Y ∈T12(Q1×Q2×W )

IP̃ (X1; Y )+[IP̃ (X2;X1,Y )− R2
]+

.

(C.10)

Next, we apply the identity [α]+ = max0≤ρ1≤1 ρ1α.
The resulting objective is linear in ρ1 and jointly
convex in (PX1 X2Y , P̃X1 X2Y ), so we can apply Fan’s
minimax theorem [41] to interchange the maximization and
minimizations, thus yielding (C.8).

We define the sets

T ′
12(PX1 X2Y , P̂X1Y )

�
{

P̃X1 X2Y ∈ P(X1 × X2 × Y) : P̃X2 = PX2 , P̃X1Y = P̂X1Y ,

EP̃ [log q(X1, X2, Y )] ≥ EP [log q(X1, X2, Y )]
}

(C.11)

T ′′
12(PX1 X2Y )

�
{

P̂X1Y ∈ P(X1 × Y) : P̂X1 = PX1, P̂Y = PY

}
. (C.12)

It follows that P̃X1 X2Y ∈ T12(PX1 X2Y ) (see (14)) if and
only if P̃X1 X2Y ∈ T ′

12(PX1 X2Y , P̂X1Y ) for some P̂X1Y ∈
T ′′

12(PX1 X2Y ). We can therefore replace the minimization over

P̃X1 X2Y ∈ T12(PX1 X2Y ) in (C.8) with minimizations over
P̂X1Y ∈ T ′′

12(PX1 X2Y ) and P̃X1 X2Y ∈ T ′
12(PX1 X2Y , P̂X1Y ).

We prove the theorem by performing the minimization
in several steps, and performing multiple applications of
Lemma 3. Each such application will yield an overall
optimization of the form sup min sup{·}, and we will implicitly
use Fan’s minimax theorem [41] to obtain an equivalent
expression of the form sup sup min{·}. Thus, we will leave
the optimization of the dual variables (i.e. the suprema) until
the final step.

1) Step 1: We first consider the minimization of the term
IP̃ (X1; X2, Y ) over P̃X1 X2Y when PX1 X2Y ∈ S( Q) and

P̂X1Y ∈ T ′′
12(PX1 X2Y ) are fixed, and thus all of the terms in

the objective in (C.8) other than IP̃(X1; X2, Y ) are fixed. The
minimization is given by

F1 � min
P̃X1 X2Y ∈T ′

12(PX1 X2Y , P̂X1Y )
IP̃ (X1; X2, Y ). (C.13)

Applying Lemma 3 with PZ1 = PX2 , PZ2 = P̂X1Y and μ1(·) =
a2(·), we obtain the dual expression

F1 = −
∑

x1,y

P̂X1Y (x1, y) log
∑

x2

PX2(x2)q(x1, x2, y)sea2(x2)

+ s
∑

x1,x2,y

PX1 X2Y (x1, x2, y) log q(x1, x2, y)

+
∑

x2

PX2(x2)a2(x2). (C.14)

2) Step 2: After Step 1, the overall objective (see (C.8)) is
given by

IP̂(X1; Y ) + ρ2F1 − ρ2 R2, (C.15)

where we have replaced IP̃ (X1; Y ) by IP̂ (X1; Y ) due to the
constraint P̃X1Y = P̂X1Y in (C.11). Since the only terms
involving P̂X1Y are IP̂ (X1; Y ) and the first term in (C.14),
we consider the minimization

F2 � min
P̂X1Y ∈T ′′

12(PX1 X2Y )
IP̂ (X1; Y ) − ρ2

∑

x1,y

P̂X1Y (x1, y)

× log
∑

x2

PX2(x2)q(x1, x2, y)sea2(x2). (C.16)

Applying Lemma 3 with PZ1 = PX1 , PZ2 = PY and
μ1(·) = a1(·), we obtain

F2 =
∑

x1

PX1(x1)a1(x1) −
∑

y

PY (y) log
∑

x1

PX1(x1)

×
(∑

x2

PX2(x2)q(x1, x2, y)sea2(x2)

)ρ2

ea1(x1). (C.17)

3) Step 3: From (C.14), (C.15) and (C.17), the overall
objective is now given by

F3 � F2 − ρ2 R2 + ρ2

∑

x1,x2,y

PX1 X2Y (x1, x2, y)

× log q(x1, x2, y)sea2(x2). (C.18)

Substituting (C.17) and performing some rearrangements, we
obtain the objective in (35), and conclude the proof by taking
the supremum over ρ2, s, a1(·) and a2(·).

C. Proof of Theorem 4

We begin with the following proposition, which shows that
the exponents (Ecc

r,1, Ecc
r,2, Ecc′

r,12) (see (17) and (27)) under
ML decoding coincide with those by Liu and Hughes in the
absence of time-sharing [12].
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Proposition 3: Under ML decoding (i.e. q(x1, x2, y) =
W (y|x1, x2)), Ecc

r,ν and Ecc′
r,12 can be expressed as

Ecc
r,ν( Q, Rν)

= min
PX1 X2Y ∈S( Q)

D(PX1 X2Y ‖Q1 × Q2 × W )

+ [
IP (Xν; Xνc , Y ) − Rν

]+ (C.19)

Ecc′
r,12( Q, R1, R2)

= min
PX1 X2Y ∈S( Q)

D(PX1 X2Y ‖Q1 × Q2 × W )

+ [D(PX1 X2Y ‖Q1 × Q2 × PY ) − (R1 + R2)
]+

. (C.20)

Proof: The proof is similar to that of [15, Lemma 9], so we
provide only an outline, and we focus on the type-12 exponent.
Consider any pair (PX1 X2Y , P̃X1 X2Y ) satisfying the constraints
of (27). If D(P̃X1 X2Y ‖Q1 × Q2 × PY ) ≥ D(PX1 X2Y ‖Q1 ×
Q2 × PY ), we can lower bound the objective of (27) by that
of (C.20). In the remaining case, we may use the constraint
EP̃ [log W ] ≥ EP [log W ] to lower bound the objective in (27)
by that of (C.20) with P̃X1 X2Y in place of PX1 X2Y . This proves
that (C.20) lower bounds (27), and the matching upper bound
follows immediately from the fact that P̃X1 X2Y = PX1 X2Y

satisfies the constraints of the minimization in (27).
We know that Ecc

r,12 ≥ Ecc′
r,12 always holds, and hence the

left-hand side of (45) is greater than or equal to the right-hand
side. It remains to prove the reverse inequality. From the
definition of T12(PX1 X2Y ), P̃X1 X2Y = PX1 X2Y always satisfies
the constraints of (18), and hence

Ecc
r,12( Q, R1, R2) ≤ F12( Q, R1, R2), (C.21)

where

F12( Q, R1, R2)

� min
PX1 X2Y ∈S( Q)

D(PX1 X2Y ‖Q1 × Q2 × W )

+
[

max
{

IP (X1; Y ) − R1, IP (X2; Y ) − R2,

D
(
PX1 X2Y ‖Q1 × Q2 × PY

)− R1 − R2

}]+
. (C.22)

We will prove (45) by showing that

min
{

Ecc
r,1( Q, R1), Ecc

r,2( Q, R2), F12( Q, R1, R2)
}

≤ min
{

Ecc
r,1( Q, R1), Ecc

r,2( Q, R2), Ecc′
r,12( Q, R1, R2)

}
.

(C.23)

It suffices to show that whenever F12 exceeds Ecc′
r,12, F12 also

greater than or equal to either Ecc
r,1 or Ecc

r,2. Comparing (C.20)
and (C.22), the objective in (C.22) only exceeds that of (C.20)
when the maximum in (C.22) is achieved by IP (X1; Y )−R1 or
IP (X2; Y )− R2. We show that the former implies F12 ≥ Ecc

r,2;

it can similarly be shown that the latter implies F12 ≥ Ecc
r,1.

If IP (X1; Y ) − R1 achieves the maximum, we have

IP(X1; Y ) − R1 ≥ D
(
PX1 X2Y ‖Q1 × Q2 × PY

)− R1 − R2.

(C.24)

Using the identity (C.9), we can write (C.24) as
IP (X2; X1, Y ) ≤ R2. For any PX1 X2Y satisfying this
property, the objective in (C.19) (with ν = 2) equals

D(PX1 X2Y ‖Q1 × Q2 × W ), and thus cannot exceed the
objective in (C.22). It follows that F12 ≥ Ecc

r,2.

APPENDIX D
REFINED SUPERPOSITION CODING PROOFS

D. A Preliminary Lemma

Similarly to Lemma 5 for the MAC, the following lemma
gives an alternative expression for (82) that is more amenable
to Lagrange duality techniques.

Lemma 6: The condition in (82) holds if and only if the
following holds for at least one of u = 1, 2:

R0 ≤ min
P̃U XY ∈T0(QU X ×W )

IP̃ (U ; Y )

+
[

max
{

QU (u)
(
IP̃ (X; Y |U = u) − R1u

)
,

IP̃ (X; Y |U) − R1

}]+
(D.1)

Proof: This is a special case of Lemma 4 in Appendix B
with the following identifications (u = 1, 2):

f (z) = IP̃(U ; Y ) (D.2)

g(z) = IP̃(X; Y |U) − R1 (D.3)

gu(z) = QU (u)
(
IP̃ (X; Y |U = u) − R1u

)
, (D.4)

where we recall that R1 = ∑
u QU (u)R1u . In this case, the

condition in (B.10) holds with equality.

E. Proof of First Part of Theorem 8

We show the equivalence of (D.1) (ν = 1) and (87)
(u = 1); identical arguments apply for ν = u = 2.
The primal expression is written in terms of a minimization
over P̃U XY . It is convenient to “split” this distribution into

three distributions: P̃UY , P̂XY � P̃XY |U (·, ·|1) and ˆ̂PXY �
P̃XY |U (·, ·|2). Using a similar argument to the start of Section
V-B, we can write the right-hand side of (D.1) as

sup
ρ1∈[0,1],ρ2∈[0,1]

min
P̃UY , P̂XY ,

ˆ̂PXY

IP̃ (U ; Y ) + ρ1 QU (1)IP̂(X; Y )

+ ρ1ρ2 QU (2)I ˆ̂P (X; Y ) − ρ1 R11 − ρ1ρ2 R12. (D.5)

Defining PU XY � QU X × W , the minimization is subject
to the constraints (i) P̃U = QU , (ii) P̂X = QX |U (·|1),

(iii) ˆ̂PX = QX |U (·|2), (iv) P̃Y = PY , (v) P̂Y =
P̃Y |U (·|1), (vi) ˆ̂PY = P̃Y |U (·|2), (vii) QU (1)EP̂ [log q(X, Y )]+
QU (2)E ˆ̂P [log q(X, Y )] ≥ EP [log q(X, Y )].

Similarly to Section V-B, we apply the minimization in
several steps, making repeated use of Lemma 3. We implicitly
apply Fan’s minimax theorem [41] after each step, so that the
supremum over the dual variables can be left until the end.
We provide less detail than the amount given in Section V-B,
since the general steps are similar.

1) Step 1: For given joint distributions P̃UY and P̂XY , the
minimization min ˆ̂PXY

I ˆ̂P (X; Y ) subject to the constraints (iii),
(vi) and (vii) has a dual expression given by

F1 � −F1,1 + F1,2 + F1,3 − s QU (1)F1,4, (D.6)
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where

F1,1 �
∑

y

P̃Y |U (y|2) log
∑

x

QX |U (x |2)q(x, y)s QU (2)ea2(x)

(D.7)

F1,2 �
∑

x2

QX |U (x |2)a2(x) (D.8)

F1,3 � s
∑

x,y

PXY (x, y) log q(x, y) (D.9)

F1,4 �
∑

x,y

P̂XY (x, y) log q(x, y), (D.10)

and where s ≥ 0 and a2(·) are dual variables.
2) Step 2: For a given joint distribution P̃UY , the

minimization min P̂XY
IP̂ (X; Y )− sρ2 QU (2)F1,4(P̂XY ) subject

to (ii) and (v) has a dual expression given by

F2 � −F2,1 + F2,2, (D.11)

where

F2,1 �
∑

y

P̃Y |U (y|1) log
∑

x

QX |U (x |1)q(x, y)sρ2 QU (2)ea1(x)

(D.12)

F2,2 �
∑

x

QX |U (x |1)a1(x), (D.13)

and where a1(·) is a dual variable.
3) Step 3: Next, we consider the minimization

min P̃UY
IP̃ (U ; Y ) − ρ1 QU (1)F2,1 − ρ1ρ2 QU (2)F1,1 subject

to (i) and (iv). The objective can equivalently be expressed as

F3 � IP̃ (U ; Y ) −
∑

u

ρ1(u)
∑

y

P̃UY (u, y)

× log
∑

x

QX |U (x |u)q(x, y)s1(u)ea(u,x) (D.14)

using the definitions in (88) along with a(u, x) � au(x). The
dual expression is given by

F3 =
∑

u

QU (u)b(u) −
∑

y

PY (y) log
∑

u

QU (u)

×
(∑

x

QX |U (x |u)q(x, y)s1(u)ea(u,x)

)ρ1(u)

eb(u), (D.15)

where b(·) is a dual variable.
4) Step 4: The final objective is given by

F4 � F3 + ρ1 QU (1)F2,1 + ρ1ρ2 QU (2)
(
F1,2 + F1,3)

−
∑

u=1,2

ρ1(u)QU (u)R1u. (D.16)

After applying some algebraic manipulations, we obtain the
dual expression in (D.17) at the bottom of the page.

To conclude the proof, we show that the variable b(u) can
be removed from the numerator and denominator in (D.17)

without affecting the dual optimization. For ρ1 > 0 and
ρ2 > 0, this follows by factoring b(u) into a(u, x). Using the
identity E[eb(U )] ≥ eE[b(U )] (by Jensen’s inequality), we find
that the optimal value of the objective is zero when ρ1 = 0,
regardless of whether b(u) is present. For the remaining case,
namely ρ1 > 0 and ρ2 = 0, the objective depends on a(u, x)
only for u = 1. Moreover, since (D.17) depends on b(·) only
through the difference b(2) − b(1), we may set b(2) = 0
without loss of generality. The remaining parameter b(1) can
be factored into a(1, x).

F. Proof of Second Part of Theorem 8
We focus on the derivation of (87) with u = 1, since

the case u = 2 is handled similarly. The ideas used in the
derivation are similar to those for the MAC (see the proof of
Theorem 3), but the details are more involved.

Applying Lemma 1 to the union in (68), with Z1(i) = X(1,i)
1

and Z2( j) = X(1, j )
2 , we obtain

pe,0 ≤ E

[
min

{
1, (M0 − 1)E

[
min

{
1, M11E

[
min

{
1,

M12P

[
qn
(
X, Y

)

qn(X, Y)
≥ 1

∣∣∣X1

]}∣∣∣U
]}∣∣∣∣U, X, Y

]}]
. (D.18)

Using (61), Markov’s inequality, and min{1, ζ } ≤ ζ ρ

(ρ ∈ [0, 1]), we obtain2

pe,0 ≤ (M0 Mρ1
11 Mρ1ρ2

12 )ρ0
∑

u,x1,x2

PU (u)PX1(x1)PX2(x2)

×
∑

y

W n(y|
(u, x1, x2))

(∑

u

PU (u)

×
(∑

x1

PX1(x1)

(
qn1
(
x1, y1(u))

qn1(x1, y1(u))

)ρ2s)ρ1

×
(∑

x2

PX2(x2)

(
qn2
(
x2, y2(u))

qn2(x2, y2(u))

)s)ρ1ρ2
)ρ0

,

(D.19)

where s ≥ 0 and ρ1, ρ2 ∈ [0, 1] are arbitrary. Using the
definition of the ensemble in (84)–(86), we obtain

pe,0≤̇(M0 Mρ1
11 Mρ1ρ2

12 )ρ0

×
∑

u,x1,x2

PU (u)PX1(x1)PX2(x2)
∑

y

W n(y|
(u, x1, x2))

×
(∑

u

PU (u)

(∑

x1

PX1(x1)

×
(

qn1
(
x1, y1(u))

qn1(x1, y1(u))

)ρ2s ea
n1
1 (x1)

ea
n1
1 (x1)

)ρ1

×
(∑

x2

PX2(x2)

(
qn2
(
x2, y2(u))

qn2(x2, y2(u))

)s ea
n2
2 (x2)

ea
n2
2 (x2)

)ρ1ρ2
)ρ0

, (D.20)

2In the case of continuous alphabets, the summations should be replaced
by integrals as necessary.

−
∑

u=1,2

ρ1(u)QU (u)R1u +
∑

u,x,y

PU XY (u, x, y) log

(
q(x, y)s1(u)ea(u,x)

)ρ1(u)
eb(u)

∑
u QU (u)

(∑
x QX |U (x |u)q(x, y)s1(u)ea(u,x)

)ρ1(u)
eb(u)

(D.17)
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where for u = 1, 2, au(·) is one of the Lu = 2 cost functions
in (85), and anu

u (xu) �
∑nu

i=1 au(xu,i ). For each (u, x1, x2, y),
we write the argument to the summation over y in (D.20) as
a product of two terms, namely

T1 � W n(y|
(u, x1, x2))

×
(

qn1(x1, y1(u))−ρ1ρ2se−ρ1a
n1
1 (x1)

× qn2(x2, y2(u))−ρ1ρ2se−ρ1ρ2a
n2
2 (x2)

)ρ0
(D.21)

T2 �
(∑

u

PU (u)

×
(∑

x1

PX1(x1)q
n1
(
x1, y1(u))ρ2sea

n1
1 (x1)

)ρ1

×
(∑

x2

PX2(x2)q
n2
(
x2, y2(u))sea

n2
2 (x2)

)ρ1ρ2
)ρ0

. (D.22)

Since PXu (xu) is upper bounded by a subexponential prefactor
times

∏n
i=1 QX |U (xu,i |u) for u = 1, 2 (see Proposition 1), we

have
∑

x1

PX1(x1)q
n1
(
x1, y1(u))ρ2sea

n1
1 (x1)

≤̇
n1∏

i=1

∑

x1

QX |U (x1|1)q(x1, y1,i (u))ρ2sea1(x1) (D.23)

∑

x2

PX2(x2)q
n2
(
x2, y2(u))sea

n2
2 (x2)

≤̇
n2∏

i=1

∑

x2

QX |U (x2|2)q(x2, y2,i (u))sea2(x2), (D.24)

where for u = 1, 2, yu,i (u) is the i -th entry of yu(u). Using the
definitions in (88) along with a(u, x) � au(x), we therefore
obtain(∑

x1

PX1(x1)q
n1
(
x1, y1(u))ρ2sea

n1
1 (x1)

)ρ1

×
(∑

x2

PX2(x2)q
n2
(
x2, y2(u))sea

n2
2 (x2)

)ρ1ρ2

(D.25)

≤̇
( n1∏

i=1

∑

x1

QX |U (x1|1)q(x1, y1,i(u))ρ2sea1(x1)

)ρ1

×
( n2∏

i=1

∑

x2

QX |U (x2|2)q(x2, y2,i (u))sea2(x2)

)ρ1ρ2

(D.26)

=
n∏

i=1

(∑

x

QX |U (x |ui )q(x, yi )
s1(ui )ea(ui ,x)

)ρ1(ui )

.

(D.27)

Hence, and using the fact that PU (u) ≤̇ Qn
U (u)

(see [14, Ch. 2]), we obtain

T2 ≤̇
n∏

i=1

(∑

u

QU (u)

×
(∑

x

Q(x |u)q(x, yi )
s1(u)ea(u,x)

)ρ1(u))ρ0

.

(D.28)

A similar argument (without the need for the ≤̇ steps) gives

T1 =
n∏

i=1

W (yi |xi )
(

q(xi , yi )
−ρ1(ui )s1(ui )e−ρ1(ui )a(ui ,xi )

)ρ0
,

(D.29)

where we have used the fact that W n(y|
(u, x1, x2)) =
W n1(y1(u)|x1)W n2 (y2(u)|x2). Substituting (D.28) and
(D.29) into (D.20), we obtain

pe,0 ≤̇ (M0 Mρ1
11 Mρ1ρ2

12 )ρ0
∑

u,x

PU X(u, x)

n∏

i=1

∑

y

W (y|xi )

×
(∑

u

QU (u)

(∑

x

QX |U (x |ui )

×
(

q(x, yi )

q(xi , yi )

)s1(ui ) ea(ui ,x)

ea(ui ,xi )

)ρ1(ui )
)ρ0

, (D.30)

where

PU X (u, x) �
∑

x1,x2

PU (u)PX1(x1)PX2(x2)

× 1{x = 
(u, x1, x2)}. (D.31)

If PU X were i.i.d. on QU X , then (D.30) would yield an error
exponent that is positive when (87) (u = 1) holds with strict
inequality, by taking ρ0 → 0 similarly to Theorem 3. The
same can be done in the present setting by upper bounding
PU X by a subexponential prefactor times Qn

U X , analogously
to (D.23)–(D.24). More precisely, we have

PU X(u, x) ≤̇
∑

x1,x2

PU (u)

( n∏

i=1

QX |U (x1,i |1)

)

×
( n∏

i=1

QX |U (x2,i |2)

)
1{x = 
(u, x1, x2)}

(D.32)

= PU (u)Qn
X |U (x|u) (D.33)

≤̇ Qn
U (u)Qn

X |U (x|u) = Qn
U X (u, x). (D.34)
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