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Abstract— Consider two remote nodes (encoder and decoder),
each with a binary sequence. The encoder’s sequence X differs
from the decoder’s sequence Y by a small number of edits
(deletions and insertions). The goal is to construct a message M,
to be sent via a one-way error free link, such that the decoder can
reconstruct X using M and Y. In this paper, we devise a coding
scheme for this one-way synchronization model. The scheme is
based on multiple layers of Varshamov-Tenengolts (VT) codes
combined with off-the-shelf linear error-correcting codes, and
uses a list decoder. We bound the expected list size of the decoder
under certain assumptions, and validate its performance via
numerical simulations. We also consider an alternative decoder
that uses only the constraints from the VT codes (i.e., does not
require a linear code), and has a smaller redundancy at the
expense of a slightly larger average list size.

Index Terms— File synchronization, document exchange, edit
channel, Varshomov-Tenengolts (VT) codes.

I. INTRODUCTION

CONSIDER two remote nodes with binary sequences X
and Y , respectively. The sequence Y is an edited version

of X , where the edits consist of deletions and insertions. In the
synchronization model shown in Fig. 1, the node with X (the
encoder) sends a message M via an error-free link to the other
node (the decoder), which attempts to reconstruct X using M
and Y . The goal is to design a scheme so that the decoder can
reconstruct X with minimal communication, i.e., we want to
minimize the number of bits used to represent the message M .

This synchronization model is relevant in a number of
applications including distributed file editing, and systems for
file backup and sharing (e.g., Dropbox). The synchronization
problem has been studied in several previous works, both in
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Fig. 1. Synchronization model.

the one-way setting [1]–[8], and in the two-way setting where
the encoder and decoder can exchange multiple rounds of
messages [9]–[13]. Some practical file synchronization tools
such as rsync [14] also use multiple rounds of information
exchange. We discuss the prior work on one-way synchro-
nization in more detail in Section I-B.

We seek codes for one-way synchronization: in Fig. 1, the
message M is produced by the encoder using only X , with no
knowledge of Y , except that the number of edits is at most k.
We assume that the decoder knows the length of X , which is
denoted by n. The message M belongs to a finite set M with
cardinality |M|. The synchronization rate (or redundancy per
symbol) is defined as R = log|M|

n . (Throughout the paper, log
denotes logarithm with base 2.) We would like to design a
code for reliable synchronization with R as small as possible,
noting that R = 1 is equivalent to the encoder sending the
entire string X .

In this paper, we construct a code based on multiple layers
of Varshomov-Tenengolts (VT) codes [15], for synchroniza-
tion when the number of edits k is small compared to n. The
output of the decoder is a small list of sequences that is guar-
anteed to contain the correct sequence X . We observe from
simulations that with a careful choice of the code parameters,
the list size rarely exceeds 2 or 3; for reasonably large n,
the list size can be made 1, i.e., X is exactly reconstructed.
For example, we construct a code of length n = 378 that can
synchronize from k = 7 edits with R = 0.365, and a length
n = 2800 code which can synchronize from k = 10 edits with
R = 0.135. (Details in Section IV and VIII.)

To explain the main ideas in the code construction and
the decoding algorithm, we largely focus on the case where
the edits are all deletions. Section VIII describes how to
modify the decoder (keeping the same encoding scheme) to
reconstruct a combination of insertions and deletions.

A. Overview of the Code Construction

The starting point for our code construction is the family of
Varshamov-Tenengolts (VT) codes [15], [16]. Each VT code
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Fig. 2. Blocks and chunk-strings structure for the example where
l1 = l2 = 2.

is a single edit correcting code, where the edit can be either an
insertion or a deletion. A construction based on modifications
of VT codes is also used for recovering a burst of consecutive
deletions or insertions [17]. As observed in [1], the single
edit correcting VT code provides an elegant scheme for
synchronizing from a single edit: the encoder simply sends the
VT syndrome of the sequence X . The VT syndrome (defined
in the next section) indicates which VT code X belongs to.
The decoder then uses the single edit correcting property of
the VT code to recover X .

In our case, the code needs to synchronize from k > 1
edits, assumed for now to be all deletions. The encoder
sends the VT syndromes of various substrings of X to the
decoder. Specifically, the length n sequence X is divided into
smaller chunks of nc bits each. The encoder then computes
VT syndromes for two kinds of substrings: blocks which are
composed of adjacent chunks, and chunk-strings which are
composed of well-separated chunks. Fig. 2 shows an example
where X of length 12 is divided into 4 length-3 chunks. The
blocks B1 and B2 are each formed by combining two adjacent
chunks, while the chunk-strings C1 and C2 are each formed
by combining two alternate chunks. In this case, the encoder
sends the VT syndromes of B1, B2, C1, and C2.

The intersecting VT constraints of blocks and chunk-strings
help the decoder to estimate locations of the edits. The
VT syndromes serve a dual purpose: i) they are used to recover
deleted bits in blocks or chunk-strings inferred to have a single
deletion, and this recovery may result in new blocks and
chunk-strings with a single deletion; ii) the VT syndromes
also act as hashes that eliminate a large number of potential
deletion patterns, allowing the decoder to localize the deletions
to a relatively small set of chunks.

The final part of the message is the syndrome of X with
respect to the parity-check constraints of a linear code. The
linear parity-check constraints are used to recover the deletions
in chunks that still remain unresolved at the decoder after
processing the intersecting VT constraints. We call this code
construction a two-layer code as the chunks are combined to
form two kinds of intersecting substrings. The construction
can be generalized to combine chunks in multiple ways to
form many layers of intersecting substrings. (A three-layer
construction is briefly discussed in Section IX.) Increasing the
number of constraints in the code improves its synchronization
capability at the cost of increasing the redundancy.

For decoding, we use a list decoder. The output of the
decoder is the list of all length n sequences that can be
obtained by inserting k bits into sequence Y , and satisfy

the VT constraints and the parity-check constraints that are
imposed via message M . The correct sequence X is always
in the list.

B. Related Work

In [2], Irmak et al. propose a one-way randomized scheme
that synchronizes with a message of length O(k log2 n),
where k is the number of edits and n is the length of X .
The scheme in [2] uses a multi-level message formed by
splitting X into successively smaller blocks. The message
at each level is computed by applying a hash function to
the blocks at that level. In a series of recent papers [4]–[7],
variants of the construction in [2] have been used to achieve
synchronization with message lengths of smaller order. The
deterministic scheme proposed in [5] uses a message of length
O(k log2 n

k ), and the randomized scheme in [6] achieves
synchronization with high probability with a message of length
O(k log n

k ), which is the optimal order [1].
The goal in these works is to obtain a synchronization

scheme that is order-optimal, i.e., a scheme with mes-
sage length (redundancy) of order close to k log n

k and
polynomial-time encoding and decoding. The constants in
these results are not explicitly specified and can be quite large.
For example, the message length for the scheme in [5] is
at least 200 k log n [18], which implies that we need n to
be at least a few tens of thousands before the per-symbol
redundancy is less than 1. In contrast, we are interested in
practical codes to synchronize from a few edits in sequences
that are a few hundred to a few thousand bits long.

From this perspective, the most relevant work to our setup is
the “guess-and-check” (GC) code recently proposed by Hanna
and El Rouayheb in [8]. In the GC code, the length n sequence
X is divided into chunks of log n bits each. Assume that n
is a power of 2, so that each chunk can be considered as a
symbol over the field GF (n). The encoder’s message consists
of c parity-check symbols of a systematic MDS code over
GF (n), computed with the information sequence X . Here
c > 2k, where k is the number of deletions. The decoder
considers each pattern of k deletions, and checks whether the
pattern is consistent with the parity-check symbols. Decoding
is successful if there is a unique sequence consistent with all
the linear parity-check constraints. It is shown in [8] that the
probability of successful decoding is O(n−(c−2k)/(log n)k).
A list decoder for the GC code was recently considered in [19].

Our construction can be viewed as a generalization of GC
code. Like the GC code, we divide the sequences into chunks
and use parity-check symbols as part of the message. However,
the set of syndromes of intersecting VT constraints is an
essential ingredient in our construction that is not present in the
GC code. The VT constraints significantly reduce the decoding
complexity by localizing and correcting a large number of
deletions, and reduces the number of parity-check symbols
required. The parity-check symbols help to recover a small
number of chunks in the original string, with the large majority
of chunks being resolved using the intersecting VT constraints.
In fact, in Section VII we discuss a variant of the code
that does not use any parity-check constraints. The decoding
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complexity of our scheme is compared in detail with the GC
code in Section VI-D.

List decoding of codes for insertions and deletions was
recently analyzed in [20]. Specifically, that paper obtains a
lower bound for the maximum list size when the code consists
of a single VT constraint, and shows that the list size can grow
exponentially with the number of deletions. In contrast, our
construction uses multiple intersecting VT constraints, and is
therefore challenging to analyze rigorously.

The problem of one-way synchronization from k dele-
tions is closely related to the problem of communicating
over a deletion channel that deletes k bits from a length n
codeword [21]. Constructing efficient codes for the deletion
channel is known to be a challenging problem, see e.g.,
[22]–[24]. Any one way synchronization scheme directly
yields a deletion correcting code. Indeed, for a fixed mes-
sage M from the synchronization scheme, one can take
the codebook to be the set of all sequences for which the
synchronization scheme produces M . Using this method,
we obtain a deletion correcting code corresponding to each
message of the synchronization scheme. However, it may
not be possible to translate a deletion code directly to a
synchronization scheme. For example, an efficient k-deletion
correcting channel code with near-optimal redundancy was
recently proposed in [18]. This code has redundancy of
8k log n + o(log n) and its decoding complexity is O(n2k+1).
However, this code cannot be directly translated to the one-way
synchronization model since the VT-like syndrome used in
the code only works for sequences with no consecutive ones.
Similarly, other practical codes for deletion channel such as
watermark codes [22] use codewords with a special structure
designed to aid decoding. These codes cannot be directly
applied to the one-way synchronization model where the
sequence available at the encoder is arbitrary and will not have
the desired structure in general. Our construction is based on
VT codes because they can be translated to a synchronization
scheme for one-deletion via the VT syndromes [1]. Designing
synchronization schemes based on multiple deletion correcting
channel codes is an interesting direction for future work.

C. Contributions

The organization and the contributions of the paper are as
follows.

• The construction of the two layer code and the encoding
are described in Section II, and the list decoding algo-
rithm in Section III. The performance of the list decoder
is evaluated using numerical simulations in Section IV.

• In Section V, we obtain a bound on the expected list size
under certain assumptions. Though not tight, the bound
gives insight into how the various code parameters affect
the list size.

• In Section VI-B, we analyze the complexity of encod-
ing and decoding. The list decoder consists of multiple
steps, and the complexity of each step depends on the
list size at the end of the previous step. For a fixed
number of edits, the encoding complexity is linear and the
decoding complexity is O(n3). However, this is based on

a worst-case analysis that does not consider the effect of
the VT constraints in reducing the list size. Our numerical
experiments indicate that the decoding complexity is
typically much lower. In Section VI-D, we compare the
decoding complexity with that of the Guess and Check
code via a numerical example.

• In Section VII, we discuss an alternative decoder that
does not require the parity-check constraints. Eliminating
these constraints reduces per-symbol redundancy at the
expense of a slightly larger average list size.

• In Section VIII, we extend the decoding algorithm
to handle a combination of deletions and insertions.
Section IX concludes the paper with a discussion of how
the two-layer construction can be generalized to multiple
layers.

Before we proceed, we emphasize that the code construction
and its analysis throughout the paper is for the case where the
number of edits k is constant as n grows.

Notation: We denote scalars by lower-case letters and
sequences by capital letters. We denote the subsequence
of X , from index i to index j, with i < j by X(i :
j) = xixi+1 · · ·xj . Matrices are denoted by boldfaced cap-
itals. We use brackets for merging sequences, so X =
[X1, · · · , Xu] is a super-sequence defined by concatenating
sequences X1, · · · , Xu. Logarithms with base 2 unless other-
wise mentioned.

II. CODE CONSTRUCTION AND ENCODING

We begin with a brief review of VT codes. For a detailed
discussion on properties of VT codes the reader is referred
to [25]. The VT syndrome of a binary sequence W =
(w1, . . . , wn) is defined as

syn(W ) =
n∑

j=1

j wj (mod (n + 1)). (1)

For positive integers n and 0 ≤ s ≤ n, we define the VT code
of length n and syndrome s, denoted by

VTs(n) =
{
W ∈ {0, 1}n : syn(W ) = s

}
, (2)

as the set of sequences W of length n for which syn(W ) = s.
The (n+1) sets VTs(n) ⊂ {0, 1}n, for 0 ≤ s ≤ n, partition

the set of all sequences of length n. Each of these sets VTs(n)
is a single-deletion correcting code. The VT encoding and
decoding complexity is linear in the code length n [25], [26].

A. Constructing the Message M

The message M generated by the encoder consists of three
parts, denoted by M1, M2, and M3. The first part comprises
the VT syndromes of the blocks, the second part comprises
the VT syndromes of the chunk-strings, and the third part is
the parity-check syndrome of X with respect to a linear code.

The sequence X = x1x2 · · ·xn is divided into l1
equal-sized blocks (assume that n is divisible by l1).
We denote the length of each block by nb = n

l1
. For 1 ≤ i ≤

l1, the ith block is denoted by Bi = X((i − 1)nb + 1 : inb),
and its VT syndrome is sBi = syn(Bi). The first part of the
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message is the collection of VT syndromes for the l1 blocks,
i.e., M1 = {sB1 , sB2 , · · · , sBl1

}. Since each sBi is an integer
between 0 and nb, the number of bits required to represent the
VT syndromes of the l1 blocks is l1�log(nb + 1)�.

Each of the l1 blocks is further divided into l2 chunks,
each of length nc bits. Since the length of each block is n/l1,
we have n/l1 = ncl2, and therefore the length of X satisfies
n = ncl1 l2. (We assume that n

l1
is divisible by l2.) For

1 ≤ j ≤ l2, the jth chunk within the ith block is denoted by

Ci
j = X((i − 1)nb + (j − 1)nc + 1 : (i − 1)nb + jnc).

The jth chunk-string is then formed by concatenating the jth
chunk from each of the l1 blocks. That is, the jth chunk string
Cj = [C1

j , C2
j , · · · , Cl1

j ], for 1 ≤ j ≤ l2. Fig. 2 shows the
blocks and the chunk-strings in an example where X of length
n = 12 is divided into l1 = 2 blocks, each of which is divided
into l2 = 2 chunks of nc = 3 bits.

The second part of the message is the collection of
VT syndromes for the l2 chunk-strings, i.e., M2 =
{sC1 , sC2 , · · · , sCl2

}, where sCj denotes the VT syndrome
of the jth chunk string. Since the length of each chunk-string
is ncl1, each sCj is an integer between 0 and ncl1. Therefore
the number of bits required to represent the VT syndromes of
the l2 chunk-strings is is l2�log(ncl1 + 1)�.

The final part of the message is the parity-check syndrome
of X with respect to a linear code. Consider a linear code
of length n with parity-check matrix H ∈ {0, 1}z×n. Then
M3 = HX is the third component of M . The coset of the
linear code containing X will be used as an erasure correcting
code. In our experiments in Section IV, the linear code is
chosen to be either a Reed-Solomon code over GF (2nc) or a
bianry linear code defined by parity-check constraints drawn
uniformly at random. The number of bits for M3 is equal to
the number of rows of H , i.e., number of binary parity checks
in the code, z. If a non-binary linear code with an m×n parity
check matrix over GF (2nc) is used, the number of bits for M3

is z = mnc.
The total redundancy, or the overall number of bits required

to represent the message M = [M1, M2, M3], is l1�log(nb +
1)� + l2�log(ncl1 + 1)� + z.

Since nb = ncl2, normalizing by n = ncl1l2 gives the
synchronization rate (or per-symbol redundancy) Rsync of our
scheme:

Rsync =
z

n
+

�log(ncl2 + 1)�
ncl2

+
�log(ncl1 + 1)�

ncl1
. (3)

Remark: To compute the per-symbol redundancy in (3),
we assumed that each of the (l1 + l2) VT syndromes is
separately converted to a binary sequence. The binary strings
are then concatenated to construct the message. This can be
done more efficiently: for instance, we can list all (ncl2 +
1)l1(ncl1 + 1)l2 possible syndromes, and use a look-up table
to map these syndromes into binary sequences. This gives the
following per-symbol redundancy:

Rsync =
z

n
+

�log
(
(ncl2 + 1)l1(ncl1 + 1)l2

)
�

n
(4)

≤ z

n
+

log(ncl2 + 1)
ncl2

+
log(ncl1 + 1)

ncl1
+

1
n

. (5)

For the rest of the paper, unless specified, we use the expres-
sion in (3) for the per-symbol redundancy.

To illustrate the effect of the code parameters on the
redundancy, consider the following choice for synchronizing
from k deletions: l1 = l2 = αk, for α > 0, so that
nc = n/(α2 k2). Let the number of bits used to convey the
parity check symbols be z = β(knc), for β ≥ 0. With these
parameters, the per-symbol redundancy in (3) becomes

Rsync =
β

α2 k
+

2αk�log(1 + n/(αk))�
n

. (6)

The simulation results in Section IV show that for n in the
range of a few hundreds to a few thousands, taking α close to
1 gives a good tradeoff between redundancy, synchronization
performance, and decoding complexity.

Though we are primarily interested in constructing practical
synchronization schemes for small and moderate values of n,
it is interesting to examine how the redundancy scales with
n (with k fixed). To achieve per-symbol redundancy of the
optimal order O((k log n)/n), we need to choose a constant α
and set β = 0, i.e., no parity check constraints. We discuss this
setting in Section VII, where we use a guess-based decoder
that allows us to achieve the order-optimal redundancy at the
expense of a slightly larger list size. Thus β can be viewed
as a tuning parameter that allows us to tradeoff between list
size and redundancy. In Section IX, we briefly discuss how
the two-layer construction described above can be generalized
to L = Θ(log n) layers to achieve near-optimal redundancy
even with the parity check constraints.

Example 1: Suppose that we want to design a code for
synchronizing a binary sequence of length n = 60 from
k = 4 deletions. Choose the chunk length nc = 4, so that
the sequence consists of 15 chunks. Divide the sequence into
l1 = 5 blocks, each comprising l2 = 3 chunks. Thus there
are 5 blocks each consisting of 3 adjacent chunks, and 3
chunk-strings each consisting of 5 separated chunks.

Noting that each chunk of nc = 4 bits corresponds to a
symbol in GF (24), we use a Reed-Solomon code defined
over GF (24) with length 24 − 1 = 15. We also choose
the parity-check matrix to have 4 parity-check equations
in GF (24), so we can recover 4 erased chunks using this
Reed-Solomon code.

Assume that the sequence X represented in GF (24) is

X = [4 10 5 0 3 14 7 7 1 0 2 4 4 6 8]T . (7)

Each symbol above represents a chunk of nc = 4 bits. The
first block [4 10 5] in binary is B1 = 0100 1010 0101.
The VT syndrome of this sequence is sB1 = syn(B1) = 10.
The VT syndromes of the other four blocks are 6, 3, 4,
and 11, respectively. The first part of the message is therefore
M1 = {10, 6, 3, 4, 11}.

We similarly compute M2. The first chunk-string [4 0 7 0 4]
in binary is

C1 = 0100 0000 0111 0000 0100,

with VT syndrome sC1 = 11. Computing the VT syndromes
of the other chunk-strings in a similar manner, we get M2 =
{11, 20, 4}.
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Fig. 3. Tree representing the valid block vectors for Example 2.

The final part of the message is the syndrome of X with
respect to the Reed-Solomon parity-check matrix. We use
the following parity-check matrix H in GF (24), with the
generator 2:

H =

⎡
⎢⎢⎣

1 1 1 1 · · · 1
1 2 4 8 · · · 214

1 4 3 12 · · · (22)14

1 8 12 10 · · · (23)14

⎤
⎥⎥⎦

to compute M3 = HX = [11, 6, 13, 2]T . (In the represen-
tation of GF (24) elements as degree-three polynomials with
coefficients in GF (2) with polynomial multiplication defined
modulo 1 + x + x4, the generator 2 corresponds to x.) Since
H has four rows each representing one constraint in GF (24),
z = 16 bits are needed to represent the parity-check syndrome
in binary. The total number of bits to convey the message is
5�log(13)� + 3�log(21)� + 16 = 51 bits.

III. DECODING ALGORITHM

The goal of the decoder is to recover X given Y , n and
the message M = [M1, M2, M3]. From M1, M2, the decoder
knows the VT syndrome of each block and each chunk-
string. Using this, the decoder first finds all possible configu-
rations of deletions across blocks, and then for each of these
configurations, it finds all possible chunk deletion patterns.
Since each chunk is the intersection of a block and a chunk-
string, each chunk plays a role in determining exactly two
VT syndromes. The intersecting construction of blocks and
chunk-strings enables the decoder to iteratively recover the
deletions in a large number of cases. The decoder is then able
to localize the positions of the remaining deletions to within
a few chunks. These chunks are considered erased, and are
finally recovered by the erasure-correcting code.

The decoding algorithm consists of six steps, as described
below.

Step 1: Block Boundaries

In the first step, the decoder produces a list of candidate
block-deletion patterns V = (a1, · · · , al1) compatible with
Y , where ai is the number of deletions in the ith block.
Each pattern in the list should satisfy

∑l1
i=1 ai = k with

0 ≤ ai ≤ k. The list of candidates always includes the
true block-deletion pattern. It is convenient to represent the
candidate block-deletion patterns as branches on a tree with l1
levels, as shown in Fig. 3. At every level (block) i = 1, . . . , l1,
branches are added and labeled with all possible values of ai.
Specifically, the tree is constructed as follows.

Level 1 of the tree: Consider the first nb received bits
Y (1 : nb), compute its VT syndrome u = syn(Y (1 : nb)) and
compare it with sB1 , the correct syndrome of the first block.
There are two alternatives for the k branches of the first level.

1) u = sB1 : First, the decoder adds a branch with a1 = 0,
corresponding to the case that the first nb bits are
deletion-free. The first block cannot have just one dele-
tion, because in this case the single-deletion correcting
property of the VT code would imply that u �= sB1 .
However, it is possible that two or more than two
deletions happened in block one, and by considering
additional bits from the next block, the VT-syndrome of
first nb bits accidentally matches with sB1 . For example,
consider blocks of length nb = 4, and let the first two
blocks of X be 0100 1111 . . ., with the underlined bits
deleted we get Y = 001111 . . .. In this case u = sB1 = 2.
The decoder thus adds a branch for a1 = 0, 2, . . . , k.

2) u �= sB1 : Block one contains one or more deletions and
the decoder adds a branch for a1 = 1, 2, . . . , k.

Level i + 1, 1 ≤ i < l1: Assume that we have constructed
the tree up to level i. Consider a branch of the tree at level i
with the number of deletions in blocks 1 through i given by
a1, a2, · · · , ai, respectively. This gives us the starting position
of block (i + 1) in Y . Denote this starting position by

pi+1 = nbi − di + 1. (8)

where di =
∑i

j=1 aj is the number of deletions on the branch
up to block i. Compute the VT syndrome of next nb bits u =
syn (Y (pi+1 : pi+1 + nb − 1)). There are two alternatives:

1) u = sBi+1 : If (k − di) < 2 then the only possibility is
that ai+1 = 0. If (k − di) ≥ 2, k − di − 1 branches are
added for ai+1 = 0, 2, . . . , k − di.

2) u �= sBi+1 : If (k − di) > 0 then there are (k − di) pos-
sibilities at this branch: the ith block can have 1, 2, · · · ,
(k − di) deletions. If (k − di) = 0, it is assumed this is
an invalid branch, and the path is discarded.

Example 2: Assume k = 3 deletions, l1 = 3 blocks, and
that the true deletion pattern is (0,2,1), i.e., there are zero
deletions in the first block, two deletions in second block, and
one deletion in third block. The tree constructed by the decoder
depends on the underlying sequences X and Y . In Fig. 3,
we illustrate one possible tree constructed for this scenario
without explicitly specifying X and Y .

Assume that in the first step, the syndrome matches with
sB1 , so we have a1 = 0, 2, or 3. At node b (corresponding
to a1 = 0), suppose that the syndrome does not match with
sB2 , so we have a2 = 1, 2, or 3. Now suppose that at nodes
c and d, the syndrome does not match with sB2 . At node d,
a1 = 3, so there are no more deletions available for the second
block; so this branch is discarded. At node c, a1 = 2, so the
only possibility is one deletion in the second block. Then if
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the syndrome at node h does not match sB3 , the branch is
discarded. At nodes e and f, we assign the remaining deletions
to the last block. At node g, the syndrome does not match with
a3, and the branch is discarded.

Step 2: Primary Fixing of Blocks

Denote by L1 the list of the block-deletion pattern can-
didates after the first step and denote the corresponding
block-deletion patterns by V1, · · · , V|L1|. In this second step,
for each of the block-deletion patterns, we restore the deleted
bit in blocks containing a single deletion by using the
VT decoder. Specifically, for a block-deletion pattern V =
(a1, · · · , al1), let the ith block of Y with respect to V be
S = Y (pi : pi + nb − 1) where pi is the starting position of
the ith block in Y , defined analogously to (8). If ai = 1,
feed the sequence S to the VT decoder and in Y , replace
S with the decoded sequence. After this, the ith block in Y
is deletion free, thus, the decoder updates the block-deletion
pattern V by setting ai = 0. We carry out this procedure for all
blocks with one deletion in V . This results in a sequence Ŷ ,
which is obtained from Y by recovering the single-deletion
blocks corresponding to block-deletion pattern V . Denote
the updated version of block-deletion pattern V by V̂ . Thus
at the end of this step, we have |L1| updated candidate
sequences Ŷ1, · · · , Ŷ|L1| with corresponding block-deletion
patterns V̂1, · · · , V̂|L1|.

Example 3: Consider the code of Example 1 with l1 = 5
blocks, and k = 4 deleted bits. If the list of block-deletion
patterns at the end of the first step is

V1 = (1, 1, 1, 1, 0), V2 = (1, 1, 2, 0, 0),
V3 = (1, 2, 1, 0, 0), V4 = (2, 0, 2, 0, 0),

then the updated list of block-deletion patterns is

V̂1 = (0, 0, 0, 0, 0), V̂2 = (0, 0, 2, 0, 0),

V̂3 = (0, 2, 0, 0, 0), V̂4 = (2, 0, 2, 0, 0).

Step 3: Chunk Boundaries

In this step, for each updated block-deletion pattern V̂
and the corresponding Ŷ , we list all possible allocations of
deletions across chunks. More precisely, for each pair (V̂ , Ŷ )
we list all possible l1 × l2 matrices A = (aij), where aij is
the number of deletions in the jth chunk of the ith block, such
that

∑l2
j=1 aij = ai, the ith entry of V̂ . The jth column of

matrix A, specifies the number of deletions in the l1 chunks
of the jth chunk-string. For example, some of the possible
matrices for V̂4 = (2, 0, 2, 0, 0) in Example 3 are

A1 =

⎡
⎢⎢⎢⎢⎣

1 1 0
0 0 0
0 1 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ , A2 =

⎡
⎢⎢⎢⎢⎣

2 0 0
0 0 0
0 1 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ , A3 =

⎡
⎢⎢⎢⎢⎣
1 0 1
0 0 0
1 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ .

(9)

The algorithm that lists all chunk-deletion matrices A com-
patible with a given block-deletion pattern V̂ = (a1, . . . , al1)

is very similar to the tree construction described in Step 1.
In this case, for each block-deletion pattern V̂ , another tree
will be constructed, with each path in the tree representing a
valid chunk-deletion matrix A.

Level 1 of the tree: Construct a sequence S by concate-
nating the first nc bits of each block in Ŷ and compute its
VT syndrome u = syn(S). There are two possibilities:

1) u = sC1 : For the first chunk-string, list all valid
chunk-deletion patterns of the form (a11, . . . , al11),
where 0 ≤ ai1 ≤ ai, and

∑l1
i=1 ai1 �= 1, since a single

deletion in the chunk-string would result in u �= sC1 .
2) u �= sC1 : List all valid chunk-vectors for the first

chunk-string of the form (a11, . . . , al11), where 0 ≤
ai1 ≤ ai, and

∑l1
i=1 ai1 ≥ 1.

Level j, 1 < j ≤ l2: Assume that we have constructed the
tree up to level (j−1). Thus, we know the number of deletions
in each chunk of the first (j − 1) chunk-strings. From this,
we can determine the total number of deletions in the first
(j − 1) chunks of each block. Let di,j−1 denote the number
of deletions in the first (j − 1) chunks of block i. Then along
this path, the jth chunk of ith block in Ŷ is

Sij = Ŷ
(
pi+(j−1)nc−di,j−1 :pi+jnc−di,j−1−1

)
. (10)

Form the jth chunk-string, Sj = [S1j , · · · , Sl1j ], compute its
VT syndrome u = syn(Sj), and compare it with the correct
syndrome sCj . There are two possibilities.

1) u = sCj : List all valid chunk-deletion patterns for the
jth chunk-string of the form (a1j , . . . , al1j), where 0 ≤
aij ≤ ai − di,j−1, and

∑l2
i=1 aij �= 1.

2) u �= sCj : List all valid chunk-deletion patterns for the
jth chunk-string of the form (a1j , . . . , al1j), where 0 ≤
aij ≤ ai −di,j−1, and

∑l2
i=1 aij ≥ 1. If the list is empty,

discard the branch. The list will be empty when there are
no more deletions to assign to jth chunk-string.

At the end of step 3, the decoder provides a list of pairs
(Ŷ , A), where Ŷ is a candidate sequence to be decoded using
the chunk-deletion matrix A, with aij being the number of
deletions in the jth chunk of the ith block. Denote the number
of such pairs in the list by |L3|.

Step 4: Iterative Correction of Blocks and Chunk-Strings

Similar to step 2, in step 4 we use the VT syndromes
(known from the message sent by the encoder) to recover
deletions in blocks and chunk-strings for which the matrix
A indicates a single deletion. Whenever a deletion recovered
using a VT decoder lies in a chunk different from the one
indicated by A, the candidate is discarded. As discussed in
Section IV and VI, this is an effective way of discarding
several invalid candidates. The iterative algorithm is described
below. For each pair (Ŷ , A):

i) For each column of A containing a single 1 (indicat-
ing a single deletion in the corresponding chunk-string),
recover the deleted bit in the chunk-string using its
VT syndrome. With some abuse of notation we still
refer to the restored sequence as Ŷ . If the restored bit
does not lie in the expected chunk indicated by the 1,
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discard the pair (Ŷ , A) and move to the next candidate
pair. Otherwise, update the matrix A by replacing the 1s
corresponding to the restored chunks by 0s. If there is a
row in the updated matrix A with a single 1, proceed to
step 4.ii).

ii) For each row of A containing a single 1 (indicating
a single deletion in the corresponding block), recover
the deleted bit in the block using its VT syndrome.
Again, with some abuse of notation we still refer to the
restored sequence as Ŷ . If the restored bit does not lie in
the expected chunk indicated by the 1, discard the pair
(Ŷ , A) and move to the next pair. Otherwise, update the
chunk-deletion matrix by replacing the 1s corresponding
to the restored chunks to 0s. If there is a column in the
updated matrix A with a single 1, go to step 4.i).

Denote the updated candidate pairs at the end of this
procedure by (Ỹ , Ã), and assume there are |L4| of them.

As an illustrative example, consider the three
chunk-matrices given in (9). In A1, we can successfully
recover all the deletions. In A2, we can only fix two deletions
in the third block. However, for A3, we cannot recover any
of the deletions. Thus, the updated Ã matrices are

Ã1 =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ , Ã2 =

⎡
⎢⎢⎢⎢⎣

2 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ , Ã3 =

⎡
⎢⎢⎢⎢⎣
1 0 1
0 0 0
1 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ .

(11)

In Section VII, we discuss a method to recover remaining
deletions using VT constraints and bypassing the fifth step
(where we use linear codes).

Step 5: Replacing Deletions With Erasures

In this step, for each of the |L4| surviving pairs (Ỹ , Ã),
we replace each chunk of Ỹ that still contains deletions with
nc erasures. Hence, if there are ν chunks with deletions (where
1 ≤ ν ≤ k), the resulting sequence will have length n, with
ncν erasures and no deletions. Notice that this operation of
replacing with erasures can be performed without ambiguity
since Ã precisely indicates the starting position of each chunk
and also the number of deletions within that chunk.

The purpose of the linear code is to recover the erased
bits. The minimum distance of the linear code should be large
enough to guarantee that we can resolve all the νnc erased bits.
In Example 1, as there are four deletions, we will have at most
ν = 4 erased chunks, so we choose a Reed-Solomon code with
4 parity-check equations in GF (24). The chunk-matrix Ã3 in
(11) shows that a smaller number of parity-check symbols will
not suffice if we want to correct all deletion patterns.

Some invalid candidates may be discarded in the process of
correcting the erasures as we may find that the parity-check
equations are inconsistent, i.e. there is no solution for the
erased chunks. We denote the number of remaining candidates
at the end of this step by |L5|.

TABLE I

NUMBER OF DELETIONS k, CODE LENGTH n, AND
CODE PARAMETERS FOR EACH SETUP

Step 6: Discarding Invalid/Identical Candidates

The reconstructed sequences at the end of Step 5, denoted
by X̂ , all have length n and are deletion free. For each of
the |L5| sequences X̂ , we check the VT and parity-check
constraints for each of the block and chunk-strings and discard
those not meeting any of the constraints. At the end of Step 5
it is possible to have multiple copies of the same sequence.
This is due to a deletion occurring in a run that intersects two
chunks (or more); this deletion can be interpreted as a deletion
in either chunk, and each interpretation leads to seemingly
different candidates which will turn out to be the same at
the end of the process. The surviving |L6| distinct sequences
comprise the final list produced by the decoder.

The final list of reconstructed sequences consist of all
length-n sequences that can be obtained by adding k bits to
Y and also satisfy all the VT and parity-check constraints.
The correct sequence is always among the |L6| candidates.
The synchronization algorithm is said to be zero-error if and
only if |L6| = 1 for all sequences and deletion patterns. When
|L6| > 1, the list size can be further reduced if additional hash
functions or cyclic redundancy checks are available from the
encoder.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical results illustrating the
performance of the synchronization code for various choices
of the system parameters. The different setups that were sim-
ulated are shown in Table I. For each setup, the performance
was recorded over 106 trials. In each trial, the sequence X and
the locations of the k deletions were chosen independently
and uniformly at random. For the first five setups, we used
parity-check constraints from a Reed-Solomon code over
GF (2nc) with code length (2nc − 1). For example, in setup
5 we used 7 parity-check constraints from a Reed-Solomon
code over GF (26), hence z = 42 bits are needed to represent
the parity-check syndrome. In the last three setups, where
the z entry is denoted with an asterisk, we used z binary
parity-check constraints (for a length n seqeunce) drawn
uniformly at random.

Table II shows the list sizes of the number of candidates at
the end of various steps of the decoding process. Recall that
|L1| is the number of candidate block-deletion patterns at the
end of step 1, |L3| is the number of pairs (Ŷ , A) at the end
of step 3, |L4| is the number of pairs (Ỹ , Ã) at the end of
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TABLE II

LIST SIZE AFTER EACH STEP, AVERAGED OVER 106 TRIALS

step 4, and |L6| is the number of sequences X̂ in the final list.
The average of |Li| over the 106 trials is denoted by E|Li|.
The column max |L6| shows the maximum size of the final
list across the 106 trials. The column P[|L6| > 1] shows the
fraction of trials for which |L6| > 1.

The first three setups have identical parameters, except for
the number of Reed-Solomon parity checks. This shows the
effect of adding parity-check constraints on the list size and the
redundancy. Adding more parity-check constraints improves
the decoder performance by reducing the number of trials
with list size greater than one, at the expense of increased
redundancy.

The fourth setup is precisely the code described in
Example 1. It has the same values of (nc, l1, l2) as the
first three setups but with a larger number of deletions
and parity-check constraints. We observe that increasing the
number of deletions (with nc, l1, l2 unchanged) increases the
average number of candidates in the different decoding steps.
In general, choosing l1 ≥ k ensures that the average list size
after step 1 is small.

The fifth setup is a larger code with length n = 378 and
can handle a larger number of deletions (k = 7). Though
the final list size is always one, the number of candidate
chunk-deletion matrices at the end of the third step is large,
which increases the decoding complexity. The only difference
between setups five and six is that the latter has a larger value
of l2. Comparing E|L3| for these setups, we observe that
increasing l2 significantly reduces the number of candidate
chunk-deletion matrices at the end of the third step. This is
because increasing l2 increases the number of chunk-string
VT constraints, which allows the decoder to eliminate more
candidates while determining chunk boundaries.

The last setup is a relatively long code. Although the average
number of candidates in each of the decoding steps is not
very high, we found that a small fraction of trials have a very
large number of candidates, resulting in considerably slower
decoding for these trials.

V. LIST SIZE ANALYSIS

The final list produced by the decoder consists of all
sequences that satisfy the l1 block VT constraints, the l2
chunk-string VT constraints, and the parity-check constraints.
Recall that at the end of step 3 of decoding we have a set of
candidate chunk deletion patterns, each of which is of the form
{aij}1≤i≤l1, 1≤j≤l2 , where aij is the number of deletions in
chunk j within block i. A number of candidate patterns are

then discarded in Step 4 as they fail to satisfy the intersecting
VT constraints.

As evident from Table II, the VT constraints play a key
role in reducing the list size. However, the non-linearity of
the VT constraints and the intersecting construction makes
it challenging to obtain theoretical bounds on the list size.
We will therefore bound the expected list size by considering
only the effect of the parity-check constraints. Though the
bound is loose, it gives us insight into how the code parameters
affect the list size.

In step 5 of decoding, the parity-check constraints are used
to recover the unresolved chunks for each of the surviving
chunk deletion patterns at the end of step 4. Since there are
a total of k deletions, we consider all chunk-deletion patterns
{aij}1≤i≤l1, 1≤j≤l2 that satisfy

l1∑
i=1

l2∑
j=1

aij = k, aij ≥ 0. (12)

Furthermore, assume that any pattern of upto k erased chunks
can be recovered using the z binary parity-check constraints.
This can be ensured by using z = knc linearly independent
parity-check equations from a binary linear code with min-
imum distance at least knc + 1. (For example, we can use
k parity-check constraints of an (n − k, n) MDS code over
GF(2nc).) This implies that the parity-check constraints can
be used to recover any pattern of up to k erased chunks.
For each chunk-deletion pattern considered, the bits in the
unresolved chunks are erased (according to the pattern), and
the parity-check constraints are used to recover these erased
chunks. Note that the recovered bits should be a supersequence
of the bits erased in the unresolved chunks, otherwise the
decoder can discard the deletion pattern.

We will bound the the probability that an incorrect deletion
pattern satisfying (12) satisfies all the parity-check constraints
and is a supersequence of the erased bits. Since there are(
k+l1l2−1

k

)
deletion patterns satisfying (12), this will give a

bound on the expected list size. We make two assumptions on
any sequence reconstructed using an incorrect chunk deletion
pattern. To motivate these assumptions, consider the following
example.

Example 4: Assume that nc = 3 and l1 = l2 = 2,
and that are k = 3 deletions. Let X = 101 100 011 100
and Y = 011000111, with the underlined bits being deleted
from X to produce Y . The correct chunk deletion pattern
is (1, 0, 0, 2). According to this pattern, the erased sequence
Y � = xxx 100 011 xxx where x denotes an erased bit (from
which X is recovered using the parity-check constraints.

Consider an incorrect deletion pattern, say (2, 0, 0, 1).
The erased sequence according to this pattern is Y �� =
xxx 110 001 xxx. Note that for recovered sequence based on
this deletion pattern, the decoder requires that the first chunk
contains a 0, and the last chunk contains 11. We will assume
that the bits recovered in first and fourth chunks of Y �� (using
the parity-check constraints) are uniformly random and hence
independent of the erased bits (0 in the first chunk and 11 in
the fourth chunk).
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Assumption 1: If the set of parity-check constraints has a
solution for the erased chunks corresponding to an incorrect
deletion pattern, then the recovered bits will be uniformly
random and independent of the bits erased from the chunks.

Given an incorrect deletion pattern which corresponds to
k� < k erased chunks, the chunks can be recovered using any
k� parity-check constraints of the MDS code.

Assumption 2: Given an incorrect deletion pattern for
which the erased chunks are recovered using z� < z binary
parity-check constraints then the recovered sequence satisfies
each of the remaining (z − z�) constraints independently
with probability 1

2 . Therefore the probability that the recov-
ered sequence satisfies all the remaining parity-check con-

straints is
(

1
2

)z−z′
.

Assumption 2 is motivated by the observation that when for
an incorrect chunk deletion pattern, the bits in the ith unerased
chunk in the sequence do not represent the actual ith chunk of
the sequence. Furthermore, using Assumption 1, the recovered
bits in the erased chunks are uniformly random. Hence evalu-
ating a new parity-check constraint on the recovered sequence
is equally likely to result in 0 or 1.

Proposition 1: Assume that the binary string X and the
locations of the k deletions to produce Y are both chosen
uniformly at random. Let the z ≥ knc linearly independent
binary parity-check constraints be chosen from a linear code
with minimum distance at least knc + 1 bits. Then under
Assumptions 1 and 2, the probability that the final list size
exceeds 1 satisfies

P[|L6| > 1] ≤
(

e

(
1 +

l1 l2
k

)(
nc + 1
2nc

))k

. (13)

The expected size of the final list satisfies

E|L6| ≤ 1 +
(

e

(
1 +

l1 l2
k

)(
nc + 1
2nc

))k

. (14)

Proof: Consider an incorrect deletion pattern
(a11, · · · , al1l2), where the deletions are in k� ≤ k
chunks. Let aij > 0 in this pattern. Using Assumption 1,
the probability that the nc bits recovered in this chunk (using
the parity-check constraints) are a supersequence of the
(nc − aij) bits erased in this chunk is:∑aij

m=0

(
nc

m

)
2nc

≤ (nc + 1)aij

2nc
. (15)

The numerator in the LHS is the number of supersequences of
length nc for the erased chunk (see [27] for a proof), and the
denominator is the total number of length nc binary sequences.
Therefore, the probability that the recovered sequence is a
supersequence of the erased bits in all the chunks with
deletions can be bounded by

∏
i,j:aij≥1

(
(nc + 1)aij

2nc

)
=

(nc + 1)k

2k′nc
, (16)

where we have used Σi,jai,j = k and the fact that the deletion
pattern has k� chunks with deletions, i.e., k� pairs (i, j) with
ai,j > 0.

Since k� chunks are erased, k�nc linearly independent
parity constraints suffice to recover the k�nc bits in these
chunks. Furthermore, using Assumption 2, the probability
that the recovered sequence satisfies the (z − k�nc) remain-

ing parity-check equations is
(

1
2

)z−k′nc ≤
(

1
2

)knc−k′nc .
Combining this with (16), we have the following upper bound
on the probability that the sequence recovered from the
incorrect chunk deletion pattern is in the final list:

(
1
2

)knc−k′nc (nc + 1)k

2k′nc
=
(

nc + 1
2nc

)k

. (17)

Now using union bound for each of the possible chunk
deletion patterns, the probability that the final list size exceeds
1 satisfies

P[|L6| > 1] ≤
(

k + l1l2 − 1
k

)(
nc + 1
2nc

)k

(18)

=
(

e

(
1 +

l1l2
k

)(
nc + 1
2nc

))k

, (19)

We can also use the upper bound in (17) for each of
the possible chunk deletion patterns. Noting that the correct
pattern will be on the list with probability 1, we have

E|L6| ≤ 1 +
(

k + l1l2 − 1
k

)(
nc + 1
2nc

)k

(20)

≤ 1 +
(

e(k + l1l2)
k

)k (
nc + 1
2nc

)k

. (21)

According to Proposition 1, we will have E|L6| < 2 if the
parameters are chosen such that

nc log 2 − log(nc + 1) > log e + log(1 + l1l2/k). (22)

For example, we can choose l1 = l2 = k, and nc > log
(3(1+k)) to ensure that E|L6| < 2 as the number of deletions
k grows. This choice is similar to the parameters used for the
numerical simulations in Section IV.

Since we have not taken into account the effect of the
VT constraints, the bound in (14) is loose. Indeed, the bound
suggests that increasing l1, l2 will increase the final list size.
However, we will see in the next section that increasing
l1, l2 reduces the average list size in the intermediate steps
of the decoder. This is because increasing the number of
VT constraints allows the decoder to reject a larger of number
of incorrect deletion patterns as being inconsistent with the
VT constraints. An interesting direction for future work is to
tighten the bound of Proposition 1 by taking into account the
effect of the VT constraints.

VI. ENCODING AND DECODING COMPLEXITY

In this section we discuss the number of operations required
for constructing the encoded message M = [M1, M2, M3] and
for the decoding algorithm.
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A. Encoding Complexity

Computing the VT syndrome of a length m sequence needs
O(m) arithmetic operations. For M1 we need to compute
VT syndrome of l1 blocks, each of length nb = ncl2. This
can be done with O(ncl1l2) operations. Similarly, for M2 we
need O(ncl2 l1) operations. Recalling that n = ncl1l2, the
complexity of computing M1 and M2 is O(n). Recall that
M3 = HX is constructed via multiplication of a z×n matrix
with a length n vector, which requires O(zn) operations. This
is the dominant term in the encoding complexity, therefore,
the overall complexity of the encoder is O(zn).

B. Decoding Complexity

In the following, we analyze the decoding complexity by
finding an upper bound for the complexity of each of the six
decoding steps.

Step 1: Block Boundaries

In the first step, we construct a tree for finding all the
candidates for block boundaries. At each node of the tree, a VT
syndrome of a length nb sequence is computed and compared
with the syndrome known from M1. Since there are a total
of l1 blocks, the maximum number of valid block deletion
patterns at the end of Step 1 is the number of non-negative
integer solutions of

a1 + · · · + al1 = k, (23)

which is
(
k+l1−1

k

)
. This number is only an upper bound on the

number of valid block deletion patterns as we do not take into
account the effect of the VT syndrome in discarding patterns.
(Recall that for a block deletion pattern to be valid, all the
blocks with zero deletions in the pattern should be consistent
with their VT syndromes.) Each valid block deletion pattern
is a leaf of the tree. Since there are l1 levels, the total number
of nodes in the tree is at most l1

(
k+l1−1

k

)
. (Note from Fig. 3

that not every block deletion pattern corresponds to a branch
with l1 nodes.)

Therefore, an upper bound for the number of required
operations in step 1 is:(

k + l1 − 1
k

)
× l1 × O(nb) = O

(
n

(
k + l1 − 1

k

))
. (24)

As explained in the Section III, many of the branches
of the tree will get discarded because of the block deletion
pattern being inconsistent with the VT constraints. The average
number of nodes at the final level of the tree (denoted
by E|L1|) is particularly important since it will determine
the average complexity of the next steps of the decoding.
In Table III, we compare the empirical value of E|L1| (from
Table II) with

(
k+l1−1

k

)
, the upper bound for |L1| obtained

from (23). The considerable difference between these two
numbers shows the importance of using VT codes — in
addition to recovering single deletions, they act as hashes and
allow the decoder to discard a larger number of incorrect block
deletion patterns. This significantly decreases the decoding
complexity by reducing the number of candidates that need
to be considered in subsequent steps. This lower complexity

TABLE III

COMPARISON OF AVERAGE NUMBER OF
SURVIVING PATHS AFTER STEP 1

Fig. 4. Empirical average E|L1| for different values of l1 when k = 8, and
block length nb = 42.

Fig. 5. Empirical average E|L1| for different values of nb when k = 8, and
the number of blocks l1 = 9.

allows us to efficiently decode relatively long codes like the
code in setup 7 of Table I.

In Figures 4 and 5, we show how the empirical average
E|L1| changes with the parameters of the code. The list size
|L1| depends on the number of deletions k, the number of
block constraints l1 and the number of bits per block nb.
In Figure 4, where k and nb are fixed, we see that the empirical
average E|L1| decreases with l1 (although

(
k+l1−1

k

)
, the upper

bound on |L1| increases). This is because a given solution of
equation (23) will not be in the list L1 when it is not consistent
with a block VT constraint. In particular, if ai = 0, i.e., the
block is considered deletion free according to the deletion
pattern, the VT syndrome of the sequence corresponding to
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ith block should match with the correct syndrome known
from M1.

Figure 5 shows that E|L1| also decreases with nb when
k and l1 are fixed. This is because the probability that the
VT syndrome of a length nb sequence accidentally matches
the correct block VT syndrome decreases with nb. (Recall
that that the VT syndrome is a number between 0 and nb.)
Such accidental matches, if not detected in a subsequent level
of the tree, will increase the number of incorrect deletion
patterns in L1.

Step 2: Primary Fixing of Blocks

In the second step, we use block VT syndromes to recover
deletions in blocks with a single deletion. There are at most
l1 such blocks. Since the VT decoding complexity is linear in
nb (the length of each block), the complexity for the second
step is

|L1| × l1 × O(nb) = O (n|L1|) . (25)

Step 3: Chunk Boundaries

In this step, we find all possibilities for the number of
deletions in each chunk by performing the tree search on each
of the block deletion patterns produced in the first step. Let
V = (a1, · · · , al1) to be one of the block deletion patterns at
the end of the first step. Without loss of generality, assume
that a1, a2, . . . , as are non-zero, for some s ≤ l1. Since these
s blocks are not recovered in the second step of the decoding
we know that a1, . . . , as are each greater than 1. Furthermore,∑s

i=1 ai ≤ k. Recalling that aij represents the number of
deletions in the jth chunk of the ith block, we have

a11 + a12 + · · · + a1l2 = a1

a21 + a22 + · · · + a2l2 = a2

...

asl2 + asl2 + · · · + asl2 = as. (26)

Similar to the first step, the number of non-negative integer
solutions of the above set of equations is an upper bound for
the number of nodes in the last level of the tree which can
also serve as an upper bound for the other levels. To bound
the complexity of this step we need the following lemma.

Lemma 1: The number of non-negative integer solutions of
the set of equations in (26) when

∑s
i=1 ai = k, ai ≥ 0, and

s and l2 are positive integers, is bounded by(
k/s + l2 − 1

l2 − 1

)s

. (27)

Here, for a real number x and integer a,(
x

a

)
� x(x − 1) · · · (x − a + 1)

a!
. (28)

Proof: See Appendix A.
Lemma 1 shows that (27) is an upper bound for the number

of nodes in each level of the tree corresponding to the block
deletion pattern (a1, · · · , al1). Since

∑l1
i=1 ai = k and ai ≥ 2

for 1 ≤ i ≤ s, s is a number between 1 and k
2 . It is shown

in Appendix B that the derivative of (27) with respect to s is

TABLE IV

COMPARISON OF AVERAGE NUMBER OF
SURVIVING PATHS AFTER STEP 3

positive when s > 1. Therefore, s = k
2 maximizes (27). Thus

an upper bound for the number of nodes in each level of the
tree is

max
1≤s≤ k

2

(
k/s + l2 − 1

l2 − 1

)s

=
(

l2 + 1
l2 − 1

) k
2

=
(

l2 + 1
2

) k
2

. (29)

We therefore have

|L3| ≤ |L1|
(

l2 + 1
2

) k
2

. (30)

At each node of the tree, we compute the VT syndrome of a
length ncl1 sequence and compare it with the syndrome known
from M2. Therefore, the complexity of this step is

|L3| × l2 × O(ncl1)≤O

(
n|L1|

(
l2 + 1

2

) k
2
)

= O
(
n|L1|lk2

)
.

(31)

Similar to the first step, many of the solutions of (26) are
not compatible with VT syndromes of chunk-strings. Table IV
compares the empirical value of E|L3| with the upper bound
in (30), and shows the importance of the VT constraints in
reducing the number of compatible chunk deletion patterns
in Step 3.

Step 4: Iterative Correction of Blocks and Chunk-Strings

In this step, we iteratively use the VT decoder for blocks
and chunk strings to recover deletions. Each of the VT checks
will be used at most once. Since there are l1 blocks and l2
chunk-strings an upper bound for the complexity is

|L3| × (l1 × O(ncl2) + l2 × O(ncl1)) = O (n|L3|) . (32)

Recall from the decoding algorithm that some of the candi-
dates will be discarded in this step, therefore, |L4| ≤ |L3|.

Step 5: Replacing Deletions With Erasures

In this step, we use the linear equations for recovering the
erased chunks. There are at most k erased chunks and hence
knc bits erased. Hence, the complexity of finding solutions
for the set of linear equations can be bounded by O

(
n3|L4|

)
.

We discard a candidate if there is no solution for the linear
equations; therefore |L5| ≤ |L4|.

Step 6: Discarding Invalid/Identical Candidates

In this step, we compute the VT syndrome of blocks and
chunk-strings for all the candidates on the list and compare
them with the known syndromes. Hence the complexity is
O (n|L5|).

We have computed the complexity of each step of the decod-
ing in terms of the the list size at the end of the previous step.
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An upper bound for the decoding complexity (not considering
the effect of VT codes in eliminating incompatible deletion
patterns) is O

(
n3
(
k+l1−1

k

)
lk2

)
. If one assumes that k, l2,

and l1 are fixed and the length of the code is increased by
increasing nc, then the complexity of the decoding is O(n3)
while the complexity of the encoding is O(n). We remark
again that this bound on decoding complexity is loose: as
illustrated in Tables III and IV, the the VT constraints allow
the decoder to discard a large number of incorrect deletion
patterns in Steps and 1 and 3.

As expected, the third step of decoding (determining chunk
boundaries) is the most time consuming one in practice. For
example, the average wall times for the six decoding steps for
setup 6 (for a Matlab implementation on a personal computer)
were observed to be: 0.55ms, 0.78ms, 5.5ms, 0.41ms, 0.43ms,
0.10ms.

C. Tradeoffs Between Redundancy, List Sizes,
and Decoding Complexity

To get some insight into how the redundancy and the inter-
mediate list sizes decrease with increasing n (for a fixed k),
consider the choice of parameters l1 = α1 k, l2 = α2 k for
α1, α2 > 0, and z = βknc for β ≥ 0. The bound on the
per-symbol redundancy from (5) is

Rsync ≤
β

α1α2k
+

log(1 + ncα1k)
α1knc

+
log(1 + ncα2k)

α2knc
+

1
n

.

(33)

Let us now consider increasing n and l1 by increasing α1,
with k, nc, α2 fixed. Since n = ncl1l2 = ncα1α2 k2,
n increases linearly with α1. The first two terms of the
per-symbol redundancy in (33) decrease with α1. Furthermore,
the simulation results in Fig. 4 show that the average value of
|L1| (list size at the end of Step 1) decreases as α1 increases.
We therefore expect the average list sizes at the end of Steps
1-4 to decrease with α1 (despite the upper bound

(
k+α1 k−1

k

)
on |L1| increasing). This in turn allows us to use fewer parity
check constraints (smaller value of β) which helps further
reduce the redundancy as well as decoding complexity.

We now examine via an example how the choice of the
parameters (nc, l1, l2) influence the decoding performance and
complexity for fixed (k, n), recalling that n = ncl1 l2. We let
n = 400, k = 5 and β = 0.5. The code uses z = βknc

binary parity check constraints chosen uniformly at random.
Table V shows the effect of increasing l1, with l2 and n fixed.
The decoding time decreases with increasing l1 due to fewer
valid deletion patterns at the end of the first step. 1 However,
the rate increases with l1 beyond a small value (see Figure 6).
Therefore there is a tradeoff between rate and complexity when
changing l1. Table VI shows the effect of increasing l2 with

1In our current implementation, the chunks are all of equal size nc, and
therefore n should be divisible by l1 and l2. However, if the binary parity
check constraints are drawn uniformly at random (not from a Reed Solomon
code), then we do not need equal-sized chunks or blocks. In this case, n does
not need to be divisible by l1 and l2.

TABLE V

COMPLEXITY, REDUNDANCY AND ERROR PROBABILITY
CHANGES WITH l1 WHEN l2 = 4, k = 5, n = 400

Fig. 6. Redundancy per symbol for different values of l1 and l2.

TABLE VI

COMPLEXITY, REDUNDANCY AND ERROR PROBABILITY
CHANGES WITH l2 WHEN l1 = 10, k = 5, n = 400

(l1, n) fixed. We observe that the effect of l2 on decoding time
is not as dominant as l1. This is because of the importance
of l1 in reducing number of deletion patterns in the first step.
Since the rate is symmetric with respect to l1 and l2, one
approach to choose the parameters could be tuning l2 such
that it minimizes the rate for the chosen l1. Our experiments
shows typically choosing l1 > k and l2 ≈ k gives a good
tradeoff for values of n and k that we consider in this paper.

D. Comparison With Guess and Check (GC) Codes

In the GC code, the sequence X of length n (assumed
to be a power of 2) is divided into chunks of log n bits.
The encoder’s message consists of c parity-check symbols
of a systematic MDS code over GF (n), computed with the
information sequence X . The decoder considers each possible
pattern of k deletions, erases the chunks corresponding to the
deletion pattern, and recovers the erased chunks using the
MDS decoder. Decoding is successful when the recovered
sequence is consistent with each of the c parity symbols
received from the encoder. The number of deletion patterns
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tested by the decoder is
(
n/ log n+k−1

k

)
, and the MDS decoder

run for each deletion pattern has complexity O(k3 n log n)
(assuming a Reed-Solomon code). Therefore the decoding
complexity of the GC code is O

(
(n/ logn)k k3 n log n

)
.

In particular, the complexity increases exponentially with
the number of deletions k. As discussed above, the upper
bound on decoding complexity of the multilayer scheme also
scales exponentially with k. However the empirical results
in Tables III and IV demonstrate that the ‘typical’ decoding
complexity is much lower, due to a large number of deletion
patterns being eliminated by the intersecting VT constraints.

Example: Let us compare the complexity of synchronizing
a sequence of length n = 1024 from k = 8 deletions with a
multilayer code and a GC code.

Multilayer code: The code parameters were chosen to be
l1 = 16, l2 = 8, nc = 8, and z = 60 random binary
linear constraints. The corresponding per-symbol redundancy
is R = 0.230. Over 106 independent simulation trials,
all sequences were successfully recovered by the multilayer
decoder. From VI-B, the upper bound for the list size |L1|
at the end of Step 1 is

(
k+l1−1

k

)
= 490, 314. However,

the average list size was observed to be E|L1| = 7.27, which
means that on average only 1.4 × 10−5 of the possible block
deletion patterns were forwarded to the subsequent steps.
The average list sizes at the end of Steps 3 and 4 were
E|L3| = 58.16 and E|L4| = 2.15, again much smaller than
the upper bounds. The average decoding time per trial (Matlab
implementation on a personal computer) was 0.0614 seconds.

GC Code: In the standard construction of the GC code,
the sequence is divided into chunks of log n = 10 bits. To syn-
chronize from k = 8 deletions,

(
n/ log n+k−1

k

)
> 4×1011. For

each of these patterns, the GC decoder has to run an MDS
decoder. For this sequence length n = 1024, the authors report
in [8] that the GC decoding time is of the order of seconds
for k = 3 deletions, and of the order of minutes for k = 4
deletions. Due to the prohibitively large number of deletion
patterns, decoding is infeasible for k = 8 with the default
choice of chunk length log n = 10.

As suggested in [8], the number of deletion patterns to
be checked in the GC scheme can be reduced by increasing
the chunk length, at the expense of increased redundancy.
Consider a chunk length of nc = 30, with c = (k + 1) = 9
parity symbols (which is the minimum required by the
decoder). The per-symbol redundancy of the GC code with
these parameters is R = cnc

n = 0.263, which is slightly
higher than that of the multilayer code above. The number
of deletion patterns to be checked by the GC decoder is(�n/nc�+k−1

k

)
=
(
42
8

)
> 108. Since an MDS decoder of

complexity O(k3 n log n) has to be run for each of these
deletion patterns, GC decoding is still too complex to run on
a personal computer.

To summarize, the VT constraints in the multilayer play
a crucial role in eliminating a large number of deletion
patterns, which makes decoding feasible for a larger number
of deletions than the GC scheme. On the other hand, due to
the non-linearity of the VT constraints it is difficult to obtain
sharp analytical bounds on the probability of decoding failure
and the typical decoding complexity.

Fig. 7. Example of a chunk deletion matrix A0 and the corresponding
bipartite graph.

VII. GUESS-BASED VT DECODING

In this section, we consider an alternative decoder which
does not use the parity-check constraints. Recall that the
parity-check constraints are used in Step 5 of the decoding
algorithm to recover deletions that cannot be directly recovered
using the intersecting VT constraints. Here we first charac-
terize such deletions, and then show how they can be often
be recovered using only the VT constraints. Eliminating the
parity-check constraints decreases the redundancy, but this
comes at the expense of an increased list size.

A. Unresolved Deletions in Step Four

Here we characterize the deletions that cannot be recovered
by the iterative algorithm in the step 4 of decoding, for a
given chunk-deletion matrix produced in step 3. We use a
graph representation for the chunk-deletion matrix to illustrate
this. Recall that the chunk deletion matrix A consists of
entries {aij}1≤i≤l1,1≤j≤l2 , where aij specifies the number of
deletions in the jth chunk of the ith block.

Definition 1: Define a bipartite graph G associated with each
chunk-deletion matrix A with vertex sets B and C. Each vertex
in B corresponds to a block (row of A), and each vertex in C
corresponds to a chunk-string (column of A). For any non-zero
entry aij of A, there are aij edges between the ith vertex in
B and jth vertex in C.

Figure 7 shows an example of a chunk-deletion matrix and
the corresponding bipartite graph. Here a vertex Cj represents
the jth column (chunk-string) of the matrix and Bi represents
ith row (block). In the following, we will adopt usual defi-
nitions of paths and cycles from graph theory. In particular,
if there are two edges between two vertices, it is considered
a cycle of length 2.

In step 4, the decoder iteratively corrects deletions by
identifying a row or column in A with a single one. This cor-
responds to finding a degree one vertex in the bipartite graph.
When such a vertex is identified, the deletion is corrected and
the bipartite graph updated by removing the edge connected to
the degree one vertex. This process is iterated until there are
no more degree one edges. In the example in Figure 7, C5 is
a degree one vertex, indicating that the fifth chunk-string has
only one deletion. The deletion corresponding to edge between
B4 and C5 is recovered, and this edge is then removed from
the graph. The other deletions remain unresolved as there are
no more degree one vertices. The following result determines
the graph configurations that result in unrecovered deletions
at the end of Step 4.

Proposition 2: A deletion occurring in the jth chunk of
the ith block will not be recovered by means of the iterative
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algorithm if and only if the corresponding edge, BiCj , in the
graph G belongs to a cycle, or belongs to a path between two
cycles.

Proof: Consider an unrecovered edge BiCj which does
not belong to a cycle. As the degree of Bi is greater than
one, we can find a vertex other than Cj connected to Bi.
Similarly, the degree of that vertex is greater than one, hence
we can continue this procedure. Since the graph is finite we
revisit a vertex which means there is a path from Bi to a cycle.
By repeating this argument for Cj , we conclude that BiCj is
in a path which connects two cycles.

B. Guess-Based Decoding

Here we show how to recover the remaining deletions at
the end of step 4 of the decoding by guessing bits to break
cycles in the bipartite graph. Since there are no parity-check
constraints, the per-symbol redundancy is now:

R =
�log(ncl2 + 1)�

ncl2
+

�log(ncl1 + 1)�
ncl1

, (34)

which is a saving of z/n over the redundancy in (3).
To motivate the guess-based decoder, consider the matrix

A0 and its corresponding graph in Figure 7. After correcting
the deletion corresponding to B4−C5, the remaining deletions
form a cycle of length 6 in the graph. If we recover one of
the deletions in the cycle, then we can immediately recover all
the other deletions using the iterative algorithm (as there is no
other cycle in the graph). We therefore guess the deleted bit
(both location and value) in one of the chunks in the cycle. For
instance, we can guess the deleted bit in C1. Since we already
know (nc−1) bits of C1, there are (nc +1) distinct sequences
that can be obtained by inserting one bit into this chunk. The
decoder runs the iterative deletion correction algorithm Step
4 for each of these nc + 1 obtained sequences. Since there
are no other cycles in the graph, the iterative algorithm will
either successfully find all the remaining deletions, or discard
the sequence due to the position of the recovered bits being
incompatible with the chunk they are expected to be in
(known from A0). The decoder then forwards the remaining
sequences, which are now of length n, to the sixth step of the
decoding algorithm (bypassing the fifth step).

In general, for each unresolved chunk-deletion matrix at
the end of Step 4, Proposition 2 identifies a minimal set
of deletions that need to be guessed in order to resolve all
the deletions corresponding to the chunk-deletion matrix. The
proposition tells us that it is necessary and sufficient to remove
a set of edges such that the remaining graph has no cycles.
Hence, the minimum number of edges that need to be removed
to make the graph acyclic is equal to the minimum number of
bits that need to be guessed. Denote this number by a∗. If there
are c connected components in the graph with α1, · · · , αc

vertices, respectively, then a∗ = e − (
∑c

i=1 αi) + c, where
e is the total number of edges in the graph (total number of
deletions). Since the number of distinct supersequences that
can be obtained by inserting a∗ bits in a length (nc − a∗)

TABLE VII

NUMBER OF DELETIONS AND CODE PARAMETERS FOR EACH SETUP

TABLE VIII

LIST SIZE DISTRIBUTION FOR GUESS-BASED DECODER

binary sequence is [27]

a∗∑
j=0

(
nc

j

)
≤ (nc + 1)a∗

. (35)

Using (35), (nc + 1)a∗
is an upper bound for the number

sequences that need to be guessed. Note that a∗ is determined
by the specific chunk-deletion matrix (or its bipartite graph).

In our implementation of the algorithm, the decoder chooses
one of the edges in a cycle uniformly at random, removes the
edge it by guessing a bit in the corresponding chunk, and
then performs the iterative algorithm on the updated graph
(discarding inconsistent candidates). If any unresolved dele-
tions remain, it chooses another edge from a cycle uniformly
at random, and repeats the algorithm until there are no more
edges in the graph.

Numerical simulations: We present simulation results for
the guess-based decoder, for the setups listed in Table VII.
Setup 8 and 10 are similar to setups 1 and 4 in Section IV
respectively, with the only difference being that there is no
linear code in setups 8 and 10. The quantity R�

sync in brackets
is the higher overall redundancy per symbol when linear codes
were used. The performance was recorded over 106 simulation
trials. The first three columns in Table VIII show the fraction
of trials in which the final list size was exactly 1, 2, and 3
respectively. The fourth column shows the fraction of trials
with more than 3 candidates on the final list, and the last
column shows the largest list size over all 106 trials.

Comparing the performance of setups 8 and 10 in Table VIII
with setups 1 and 4 in Table II shows that the guess-based
iterative decoder allows for smaller rates, but has a much larger
probability of having more than one candidate on the final list.
Guess-based decoding is effective if we are willing to tolerate
list sizes greater than one with non-negligible probability.

Comparing setups 8 and 9 shows that increasing nc

decreases the redundancy (according to (34)) but increases
the average list size. The reason for this is that when a
chunk deletion pattern contains cycles, the number of possible
guesses increases with nc. The same effect can be observed by
comparing setups 10 and 11. Furthermore, as expected, the list
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size increases with the number of deletions k as can been seen
by comparing setups 8 and 10 (and also setups 9 and 11).

VIII. SYNCHRONIZING FROM A COMBINATION OF

DELETIONS AND INSERTIONS

In this section, we use the multilayer code for synchroniza-
tion when the edits are a combination of insertions and dele-
tions. The code construction and the encoding are unchanged,
and as described in Section II, the message sent by the
encoder is of the form M = [M1, M2, M3]. We describe the
modifications required in the decoding algorithm to recover a
combination of up to k deletions and insertions. First notice
that for the case where we have only insertions we can use
nearly the same decoding algorithm used for the deletion
only case. (Recall that VT codes can recover either a single
insertion or deletion in a sequence.)

For the case where the edits are a combination of insertions
and deletions, assume that the sequence Y is of length m can
be obtained from X by a deletions and b insertions where
a + b ≤ k. (Thus m = n − a + b.) We will use a similar
six-step decoder for reconstructing X .

1) Step 1: In this step, we perform a tree search to find the
number of insertions and deletions in each block. The output
of this step is a list of block edit patterns of the form

V =
(
(a1, b1), (a2, b2), · · · , (al1 , bl1)

)
, (36)

where ai and bi are the number of deletions and insertions,
respectively, in block i according to the edit pattern. Each valid
edit pattern should satisfy

l1∑
i=1

(ai + bi) ≤ k,

l1∑
i=1

(ai − bi) = n − m. (37)

The tree search to construct the list of valid block edit
patterns proceeds sequentially as follows. Assume that for a
given node at level j of the tree corresponds to a total of dj

deletions and ιj insertions in the previous (j − 1) blocks. The
starting point of the jth block is then

pj = (j − 1)nb − dj + ιj + 1. (38)

Note that given (37), we know that aj and bj should satisfy

aj ≤ k + n − m

2
− dj , bj ≤ k + m − n

2
− ιj . (39)

The decoder computes the VT syndrome of the jth block,
syn(Y (pj :pj +nb−1)). If it does not match with the correct
VT syndrome of block j (which is known from the message
sent by the encoder), the possible values for aj and bj are all
the pairs which satisfy (39) and also aj+bj �= 0. If dj+ιj = k,
then we discard the correspond branch of the tree.

If the VT syndrome of the block matches with the correct
VT syndrome, then the possible values for (aj , bj) are all the
pairs which satisfy (39) as well as aj + bj �= 1.

2) Step 2: For each valid block edit pattern from step 1,
the decoder recovers the edits in the blocks with a single
insertion or deletion, i.e. when ai + bi = 1. After recovering
the edit in a block, the edit pattern is updated.

3) Step 3: The goal of this step is to create a list of
chunk-edit matrices, each of dimension l1 × l2, the (i, j)
entry of the matrix is a pair (aij , bij). Here aij , bij denote
the number of deletions and insertions, respectively, in the
jth chunk of ith block. Similar to step 3 of decoding in
the deletion-only case, we construct these chunk-edit matrices
via a tree search for each block edit pattern of the form
((a1, b1), (a2, b2), · · · , (al1 , bl1)). This is done sequentially as
follows.

For each node at level j of the tree, the decoder knows aih

and bih for all i and h < j. Thus it knows the starting position
of the jth chunk of each block, and can therefore form the jth
chunk-string and compute its VT syndrome. This computed
VT syndrome is compared with the correct syndrome of jth
chunk-string (known from the encoder’s message). There are
two possibilities:

1) If the VT syndrome of the jth chunk-string matches the
correct syndrome, the possible values for aij and bij are
all non-negative integers that satisfy

∑l1
i=1(aij +bij) �= 1

and also:

aij ≤ ai −
j−1∑
h=1

aih and bij ≤ bi −
j−1∑
h=1

bih. (40)

2) If the VT syndrome of the jth chunk-string does not
match the correct syndrome, the possible values for aij

and bij are all non-negative integers that satisfy (40), and
also

∑l1
i=1(aij + bij) �= 0. The node will be discarded if

ai =
j−1∑
h=1

aih and bi =
j−1∑
h=1

bih, for 1 ≤ i ≤ l1.

(41)

4) Steps 4 to 6: The last three steps are very similar
to the deletion only case. In step 4, we iteratively use the
VT decoder to recover any single deletion in blocks or chunk-
strings. Similarly to the deletion only case, we will discard
a candidate if the recovered bit lies in a wrong chunk.
In step 5, we replace any chunk which still contains edits with
nc erasures, and use the parity-check constraints to recover
erasures; any inconsistent candidate will be discarded. Finally,
at the sixth step we check all constraints for the remaining
candidates and output all compatible sequences.

Numerical simulations: We evaluated the performance of
the decoder for the seven setups in Table VII. For each k, the
number of deletions was chosen to be an integer d between
0 and k uniformly at random. The number of insertions was
then (k − d). Table IX shows the average list size for each
each of the setups, in the different steps of the decoding.
As expected, with a combination of insertions and deletions,
the number of valid block edit patterns (in step 1) and chunk
edit matrices (in Step 3) are larger than the deletion-only case.
As the decoding complexity of each step depends on the list
size at the end of the previous step, the average decoding com-
plexity is also higher than the deletion-only case. However,
we observe that the increase in the final list size compared to
the deletion-only case (Table II) is negligible. This is because
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TABLE IX

LIST SIZE AFTER EACH STEP WHEN THERE ARE
BOTH INSERTIONS AND DELETIONS

Fig. 8. Factor graph representation of a three-layer code.

a large number of the edit patterns are inconsistent with the
intersecting VT constraints and the parity-check constraints.

IX. DISCUSSION AND FUTURE WORK

In this work we introduced a new method for one-way
synchronization of binary sequences based on a combination
of intersecting VT constraints and linear parity-check con-
straints. We showed that the intersecting VT constraints enable
a iterative decoding procedure which alternates between iden-
tifying compatible edit patterns, and correcting subsequences
indicated by these patterns as having a single edit.

Generalizing the two-layer construction: The code construc-
tion based on two layers of intersecting VT constraints can
be generalized in many ways. First, it can be extended to
sequences over non-binary alphabets with size q > 2 by
using the q-ary VT codes proposed by Tenengolts [28]. The
construction can also be generalized to include multiple layers
of intersecting VT constraints. We illustrate the idea with an
example of a three-layer construction. Consider a sequence
X = [v1, v2, · · · , v8] consisting of eight chunks of length nc

each. The message consists of syndromes corresponding to
three kinds of intersecting VT constraints, defined as follows.
The two block constraints, B1 and B2, are the VT syndromes
of [v1, v2, v3, v4] and [v5, v6, v7, v8]. The two chunk-string
constraints C1 and C2, are the VT syndromes of [v1, v2, v5, v6]
and [v3, v4, v7, v8]. The third set of constraints, T1 and T2,
are the VT syndromes of [v1, v3, v5, v7] and [v2, v4, v6, v8].
Figure 8 illustrates the three sets of constraints using a factor
graph, with the circles and squares representing the chunks
and constraints, respectively. The decoding algorithm for a
such a construction is a straightforward extension of that in
Section III: we identify the compatible chunk edit patterns via
a tree search, and then using the VT constraints to iteratively
solve for sub-sequences with a single deletion.

Extending this idea further, we could consider an L-layer
construction with L = Θ(log n) layers, l1 = l2 =
. . . = lL = 2, nc = log n, and z = knc binary parity

check constraints. Such a construction would have an overall
redundancy of k log n+2L log(n

2 +1), which is near-optimal.
Moreover, since each layer has only two VT constraints the
number of sequences compatible with each layer is at most k.
Developing an iterative decoding algorithm to recover the
chunks from these constraints, and investigating the trade-offs
between redundancy, list-size, and decoding complexity is an
interesting direction for future research.

Another direction for future work is to use the multilayer
code construction for communication over the deletion chan-
nel. Such a channel code will consist of all sequences with a
specified set of values for the intersecting VT and parity-check
constraints. The decoding algorithm is essentially the same as
that described in Section III, however constructing an efficient
encoder for this channel code is an open question.

APPENDIX

A. Proof of Lemma 1

Proof: Define the function p(x) =
(
x+l2−1

l2−1

)
. We note that

p is a polynomial of degree (l2−1), and p(ai) is the number of
non-negative integer solutions to the equation

∑l2
j=1 aij = ai.

We first show that p(x)p(y) ≤ p(x+y
2 )2 for any two positive

real numbers x, y. To show this, we need to prove

l2−1∏
i=1

(y + i)(x + i) ≤
l2−1∏
i=1

(x + y

2
+ i
)2

, (42)

which clearly follows from xy ≤ (x+y
2 )2. Now if we define

g(x) � ln(p(x)), we have g(x) + g(y) ≤ 2g(x+y
2 ) which

means g is mid-point concave, and since it is continuous, it is
generally concave. Hence, we have g(x1) + g(x2) + · · · +
g(xn) ≤ ng(

∑n
i=1 xi/n) for any integer n and positive xi’s.

Therefore, we have

p(x1)p(x2) · · · p(xn) ≤ p

(∑n
i=1 xi

n

)n

. (43)

Choosing n = s and xi = ai yields the result.

B. Derivative of (27)

Here we show that the derivative of f(s) =
(
k/s+l2−1

l2−1

)s
with respect to s is positive for s > 0. We write f(s) =
h(s; l2)s, where

h(s; l2) =
(

k/s + l2 − 1
l2 − 1

)
. (44)

Hence, we have:

d ln f(s)
ds

=
1

f(s)
f �(s) = ln(h(s; l2)) +

s

h(s; l2)
h�(s; l2).

(45)

Therefore, to prove df/ds > 0 for s > 0 we need to show
that

ln(h(s; l2)) +
s

h(s; l2)
h�(s; l2) > 0. (46)

From the definition in (28), we can write h(s; l2) =
p(s−1; l2)/(l2 − 1)!, where

p(s; l2) = (ks + 1)(ks + 2) · · · (ks + l2 − 1). (47)
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Using this in (46), we need to show that

ln(h(s; l2)) >
p�(s−1; l2)
sp(s−1; l2)

. (48)

We prove (48) by induction on l2. For l2 = 2, we need to
show that

ln(ks−1 + 1) >
k

(k + s)
(49)

Letting x = ks−1, then we can rewrite (49) as ln(x + 1) >
x

(x+1) , which holds for all x > 0. Assuming that (48) holds
for l2, we prove it for l2 + 1. We have

ln (h(s; l2 + 1)) =
(
ln(ks−1 + l2) − ln(l2)

)
+ ln (h(s; l2))

(50)

>
(
ln(ks−1 + l2) − ln (l2)

)
+

p�(s−1; l2)
sp(s−1; l2)

,

(51)

where the inequality holds by the induction hypothesis.
Using (47), we have

p�(s; l2 + 1)
p(s; l2 + 1)

=
d ln p(s; l2 + 1)

ds
=

l2∑
i=1

k

i + ks
. (52)

Therefore,

p�(s−1; l2 + 1)
sp(s−1; l2 + 1)

=
k

k + l2 s
+

p�(s−1; l2)
sp(s−1; l2)

. (53)

Comparing the RHS of (51) and (53) we have to prove that

ln
(

ks−1 + l2
l2

)
>

k

k + l2 s
. (54)

Letting x = ks−1/l2, this is equivalent to showing that
ln (x + 1) > x

x+1 . This holds for all x > 0, which completes
the proof.
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