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Importance Sampling for Coded-Modulation
Error Probability Estimation
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Abstract— This paper proposes an efficient simulation method
based on importance sampling to estimate the random-coding
error probability of coded modulation. The technique is valid for
complex-valued modulations over Gaussian channels, channels
with memory, and naturally extends to fading channels. The
simulation method is built on two nested importance samplers to
respectively estimate the pairwise error probability and generate
the channel input and output. The effect of the respective number
of samples on the overall bias and variance of the estimate of
the error probability is characterized. For a memoryless channel,
the estimator is shown to be consistent and with a small variance,
growing with the square root of the code length, rather than the
exponential growth of a standard Monte Carlo estimator.

Index Terms— Coded modulation, random coding, error
probability, Monte Carlo simulation, importance sampling.

I. INTRODUCTION

IMPORTANCE sampling [2], an improved Monte Carlo
simulation in which samples are generated according to

tilted distributions, may significantly reduce the sampling
size in estimating the error probability of a communication
scheme [3]. For instance, the transmission of uncoded sym-
bols over the AWGN channel was studied in [4]–[6] with
importance sampling techniques, where sampling distributions
involve variance scaling and mean translations. Efficient sim-
ulation methods of high-performance codes were proposed in,
e. g., [7], [8] for low density parity check (LDPC) codes.

In this paper, we study the error probability in the detection
of coded-modulation signals. Currently, most powerful codes
such as polar codes, LDPC codes or turbo codes have large
code lengths, an assumption incompatible with the low-latency
and ultra-high reliability requirements for next-generation
wireless systems. Recently, Polyanskiy et al. [9] derived tight
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bounds to the error probability of random codes valid for
short code lengths. With random codes, a common tool used
in information theory to show the existence of good codes
at rates below the channel capacity, one studies the error
probability averaged over all possible randomly-generated
codes. Evaluating the random-coding error probability, rather
than that of a given code, becomes a useful tool to characterize
the performance of coded modulation, primarily in channels
where good codes are unexplored or unknown. We thus focus
on the random coding union (RCU) bound [9, Eq. (62)] to
describe the error probability of good codes of arbitrary length.

The exact computation of the RCU bound is cumbersome
even for short code lengths, as it involves high-dimensional
integrations; we address numerical simulation instead. Yet,
simulation of such small a quantity would require a number
of samples exponential in the code length to achieve an
acceptable level of precision [10]. To solve this rare-event sim-
ulation problem, we find an importance-sampling tilting that
explicitly exploits the known exponential decay of the RCU
bound with the code length to estimate the pre-exponential
factor of the coded error probability, instead of the full
probability.

The rest of the paper is organized as follows. In Sec. II,
we describe the error probability of random codes and outline
the computational challenges to calculate the RCU bound.
We present our efficient importance-sampling simulator of the
RCU bound in Sec. III, and derive closed-form expressions
of the optimal tilted distributions valid for any block coded
modulation. Our estimator consists of two nested importance
samplers, respectively related to the estimate of a pairwise
error probability and to the generation of the channel input and
output. In Sec. IV, we carry out an asymptotic performance
analysis for memoryless channels to describe the effect of
the number of samples on the overall bias and variance
of the nested estimator. We consider some examples with
coded binary phase-shift keying (BPSK) modulation over the
AWGN and the i.i.d. Rayleigh fading channels in Sec. V, and
summarize the main contributions of the paper in Sec. VI.

II. CODED-MODULATION ERROR PROBABILITY

Let C be a block code with M = 2k codewords x1, . . . , xM ,
where k is the number of information bits. Each codeword x
has n symbols drawn from a constellation X . The code rate
is given by Rb = k

n bits per channel use. This code is used
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for transmission over a channel with conditional probability
density Wn(y|x), where the length-n sequence y represents
the equivalent baseband channel output. The error probability,
denoted by Pe(C), is the probability of decoding in favor of a
codeword xj other than the transmitted one xm, j �= m.

The computation of Pe(C) is challenging, due to the com-
plex code structure for large values of n, because of the expo-
nentially large number of messages M , or since good codes
themselves are unknown for small n. Instead of considering a
fixed code C, we study the error probability Pe,n averaged over
all codes of M codewords generated by independent drawings
from some input distribution Qn(x). Shannon’s random coding
arguments show the existence of at least one good code whose
error probability is at most Pe,n, the expectation of Pe(C) over
all possible codes. Evaluating Pe,n rather than Pe(C) is not
only of theoretical importance but also serves as a performance
benchmark for the designers of good codes.

A minor relaxation of the probability Pe,n is given by the
random coding union (RCU) bound to the random coding error
probability [9, Eq. (62)], satisfying Pe,n ≤ rcun, where

rcun=
∫

Qn(x)Wn(y|x)min
{
1, (M− 1)pepn(x, y)

}
dxdy.

(1)

In (1), the pairwise error probability pepn(x, y) is the proba-
bility that the decoder decodes in favor of another independent
random codeword x for fixed transmitted codeword x and
received sequence y, i.e.,

pepn(x, y) =
∫

Qn(x)1{�n(x, y, x) ≥ 0} dx, (2)

and 1{·} is the indicator function taking the value one if the
condition is satisfied and zero otherwise, and �n(x, y, x) is
the log-likelihood ratio

�n(x, y, x) = log
Wn(y|x)
Wn(y|x)

. (3)

In short, the RCU bound characterizes the error probability of
good codes with rate Rb and length n, whose error probability
is as good as the right-hand side (r.h.s.) of (1).

The expressions for rcun and pepn(x, y) in (1) and (2)
respectively are both given by an expectation of a non-negative
function f(z) of some random variable Z with density P (z),

pn = E
[
f(Z)

]
, (4)

where from now on we write the expectation operation as E[·]
for the sake of compactness. Evaluating the expectation in (1)
involves integrations over joint probability densities

Qn(x)Wn(y|x)Qn(x), (5)

which is complex even for simple channels and moderate
values of n. Instead of resorting to approximations (e.g.,
[11]–[14]), we explore fast and accurate simulation to esti-
mate (1). While the proposed estimator is valid for generic
channel law Wn(y|x) and input Qn(x), we restrict our
analysis to memoryless channels with product input distrib-
utions, for which Wn(y|x) =

∏n
i=1 W (yi|xi) and Qn(x) =∏n

i=1 Q(xi).

III. IMPORTANCE SAMPLING

The standard Monte Carlo estimate of a quantity pn as
in (4), denoted by p̂n,N , involves generating N samples,
z1, . . . , zN , according to P (z) and computing the average

p̂n,N =
1
N

N∑
i=1

f(zi). (6)

By construction, pn is the mean of each summand in (6).
We also define σ2

n to be the variance, normalized to the squared
mean, of each summand in (6).

In order to describe the accuracy of an estimator in
approaching the exact value of the quantity pn as N increases,
we make use of the notion of convergence in probability. Two
sequences of random variables AN and BN indexed by N are
said to converge in probability if for all ε > 0, it holds

lim
N→∞

Pr[|AN −BN | > ε] = 0. (7)

We denote the convergence in probability by AN
p−−−−→

N→∞ BN .
Using the central limit theorem [15, Ch. XV.5], as N →∞

the estimator p̂n converges in probability to

p̂n,N
p−−−−→

N→∞ pn

(
1 +

σn√
N

ΘN

)
, (8)

where and ΘN has a probability density that converges uni-
formly in θ to the density pΘ(θ) of a standard normal random
variable Θ. Equivalently, the relative error converges to a
normal random variable with zero mean and variance σ2

n/N ,

p̂n,N − pn

pn

p−−−−→
N→∞

σn√
N

Θ. (9)

The Monte Carlo estimator p̂n,N is unbiased since its
expected value coincides with the quantity to be estimated,
namely pn. Besides, when f(z) in (6) is an indicator function,
using (9) and the fact that the variance σ2

n is normalized to the
squared mean, i. e. p2

n, we infer that the number of samples
needed to estimate pn to a given confidence level grows as
N ∝ p−1

n , [10, Sec. 4.1].
Alternatively, importance sampling is a variance-reducing

estimation technique that involves the generation of i.i.d. sam-
ples from another distribution P̄ (z) [2] to estimate pn as

p̂n,N =
1
N

N∑
i=1

ω(zi)f(zi), (10)

where the weights ω(z) account for the distribution mismatch
and are given by ω(z) = P (z)/P̄ (z). A good choice for P̄ (z)
is known to be the exponential tilting [10]. For any s ≥ 0 and
a certain function gn(z), define the tilted distribution

P̄s,g(z) = P (z)esgn(z)−κn(s), (11)

where κn(s) is the cumulant generating function [16] of gn(z),

κn(s) = log E
[
esgn(Z)

]
, (12)

and the weights are given by

ωs,g(z) = eκn(s)−sgn(z). (13)
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Roughy speaking, the importance-sampling estimator
approximates the pre-exponential factor αn in the quantity
pn = αn(s) · eκn(s) by α̂n,N , instead of directly estimating pn.
Hence, the importance-sampling estimator (10) becomes

p̂n,N = α̂n,N(s) · eκn(s), (14)

where α̂n,N(s) is given by

α̂n,N(s) =
1
N

N∑
i=1

e−sgn(zi)f(zi) (15)

and the samples zi are independently drawn from P̄s,g(z).
The importance-sampling estimator (14) is unbiased

[10, Sec. 4.2] with a normalized sample variance given by

σ2
n =

E
[
eκn(s)−sgn(Z)f(Z)2

]− p2
n

p2
n

. (16)

The limit in (8) remains valid with a normalized sample vari-
ance that is now reduced by properly choosing the parameters
s ≥ 0 and gn(z). A good choice of s is the minimizer of the
cumulant generating function κn(s), i.e.,

ŝn = arg min
s≥0

κn(s). (17)

A. Pairwise Error Probability

For the importance-sampling estimate of the pairwise error
probability in (2) with integration variable x, we select gn(x)
to be the log-likelihood ratio in (3), gn(x) = �n(x, y, x).
As mentioned at the end of this subsection, this choice
helps capturing the correct exponential decay of the pairwise
error probability in terms of n for memoryless channels. The
corresponding cumulant generating function is given by

κn,τ (x, y) = log E
[
eτ ·�n(x,y,X)

]
. (18)

For this choice, the tilted distribution P̄τ (x|y) in (11) for the
estimation of pepn(x, y) can be explicitly computed as

P̄n
τ (x|y) =

Qn(x)Wn(y|x)τ∫
Qn(x′)Wn(y|x′)τdx′

. (19)

While the log-likelihood �n(x, y, x) depends on the channel
input x, this conditional distribution for the codeword x
depends only on the channel output y.

The importance-sampling estimator of the pairwise error
probability draws N1 independent samples xj , for j =
1, . . . , N1, from the probability distribution (19) to compute

γ̂τ,N1(x, y) =
1
N1

N1∑
j=1

e−τ ·�n(x,y,xj)fpep(x, y, xj), (20)

where

fpep(x, y, x) = 1
{
�n(x, y, x) ≥ 0

}
, (21)

to generate the final estimate

ˆpepn,N1
(x, y) = γ̂τ,N1(x, y) · eκn,τ (x,y). (22)

Based on (17), we select τ = τ̂n(x, y) given by

τ̂n(x, y) = arg min
τ≥0

κn,τ (x, y). (23)

Both the optimal parameter τ used in the function κn,τ (x, y)
and the estimator γ̂τ,N1 depend on x, y. Yet, we henceforth
drop the dependence on x, y in τ̂n to lighten the notation.
For the optimal choice of τ̂n, it follows from basic results
in large-deviation theory [17, Th. 2.2.3] that for memoryless
channels the pairwise error probability (2) behaves as

lim
n→∞

log pepn(x, y)
κn,τ̂n(x, y)

= 1. (24)

B. Random-Coding Error Probability

For the importance-sampling estimate of the random-coding
union bound in (1), an expectation with respect to the integra-
tion variables x and y, we choose

gn(x, y) = log(M − 1) + κn, 1
1+ρ

(x, y), (25)

where κn, 1
1+ρ

(x, y) is given in (18). We can compute the
cumulant generating function χn(ρ) of gn(x, y) as

χn(ρ) = log E

[
(M − 1)ρ

(
E
[
Wn(Y |X)

1
1+ρ |Y ]

Wn(Y |X)
1

1+ρ

)ρ]
. (26)

From (11), the distribution used for generating the pair of
samples (xi, yi) is given by

P̄n
ρ (x, y) = Qn(x)W̄n

ρ (y|x), (27)

where W̄n
ρ (y|x) is a tilted channel transition probability,

W̄n
ρ (y|x) =

Wn(y|x)
1

1+ρ

(
E[Wn(y|X)

1
1+ρ ]

)ρ
∫ (

E[Wn(y′|X ′)
1

1+ρ ]
)1+ρ

dy′
. (28)

Equation (27) implies that the channel input sequences xi are
generated with the original random-coding distribution Qn(x)
from Sec. II, whereas the channel output sequences yi are
drawn from the modified channel transition probability (28).

Finally, the importance-sampling estimator for the RCU
based on the independently generated pairs of samples xi, yi,
for i = 1, . . . , N2, from the probability distribution (27) is

ˆrcun,N1,N2 = α̂n,N1,N2(ρ) · eςn(ρ), (29)

where

α̂n,N1,N2(ρ) =
1

N2

N2∑
i=1

e−ρ·gn(xi,yi)frcu(xi, yi) (30)

and

frcu(x, y) = min{1, (M − 1) ˆpepn,N1
(x, y)}. (31)

Based on (17), and taking into account that the cumulant
generating function (26) gives the random-coding exponent
[18, Sec. 5.6], we select ρ as

ρ̂n = arg min
0≤ρ≤1

χn(ρ). (32)
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Algorithm 1 Importance-Sampling Estimate of the RCU
Bound
Input: Qn(x), Wn(y|x), n, Rb, N2 and N1

Output: ˆrcu
calculate M = 	2nRb
;
calculate χn(ρ) from (26);
select ρ← arg min0≤ρ≤1 χn(ρ);
find W̄n

ρ (y|x) from (28);
α← 0;
for i = 1; i ≤ N2 do

generate (xi, yi) according to Qn(x)W̄n
ρ (y|x);

compute κn,τ (xi, yi) from (18);
select τ ← arg minτ≥0 κn,τ (xi, yi);
find P̄n

τ (x|yi) from (19);
γ ← 0;
for j = 1; j ≤ N1 do

generate xj according to P̄n
τ (x|yi);

γ ← γ + 1
N1

e−τ ·�n(xi,yi,xj)1
{
�n(xi, yi, xj) ≥ 0

}
;

ˆpep← γ · eκn,τ (xi,yi);
α← α + 1

N2
e−ρ·gn(xi,yi) min{1, (M − 1) ˆpep};

ˆrcu← α · eςn(ρ);
return ˆrcu;

For the choice of ρ̂n, it follows from basic results in
large-deviation theory [17, Th. 2.2.3] that for memoryless
channels

lim
n→∞

log rcun

χn(ρ̂n)
= 1. (33)

The nested importance-sampling estimator is summarized
in pseudo-code in Algorithm 1 on the next page. In summary,
the channel Wn(y|x), the random-coding input distribution
of Qn(x), and the information rate Rb jointly determine
the outer tilting parameter ρ̂n, while auxiliary codewords are
generated in accordance to the inner tilting parameter τ̂n(x, y)
for a given channel input and output pair x, y. As expected,
the algorithm extends the classical Monte Carlo method, which
can be recovered by setting ρ̂n = τ̂n = 0.

IV. PERFORMANCE ANALYSIS

In the previous section, we presented in Algorithm 1 an
importance-sampling estimator for the RCU bound in (1).
Built from two nested estimators, the mapping from the
general tilting for importance sampling discussed at the begin-
ning of Sec. III was relatively straightforward and led to the
respective tilting parameters τ̂n and ρ̂n given in (23) and (32).

In contrast, the performance analysis is subtler, since the
outer estimator ˆrcun,N1,N2 is the sum of N2 independent terms
frcu(xi, yi) in (31), each of them a nonlinear function of the
inner estimator ˆpepn,N1

(xi, yi). As one estimator is nested
inside the other, a more refined analysis than the central-limit
theorem is needed to study the consistency, bias, and variance
of Algorithm 1. In this section, we derive an asymptotic
expansion of our estimator for memoryless channels and large
values of N1 and N2, as summarized in the following theorem.

Theorem 1: For memoryless channels, as both numbers of
samples N1 and N2 tend to infinity the importance-sampling
estimator of Algorithm 1 converges in probability to the exact
RCU bound rcun according to

ˆrcun,N1,N2

p−−−−−−−→
N1,N2→∞ rcun

(
1− k1,n

N1
+
√

k2,n

N2
Θ

)
, (34)

where k1,n and k2,n are positive numbers growing with n as
O(
√

n), and Θ is the standard normal random variable.
The positive term k1,n in (34), linked in Sec. IV-A to

the variance of the estimate of the pairwise error probability
ˆpepn,N1

(x, y), induces a negative bias in the estimation of
the RCU bound. The estimator is asymptotically consistent,
as the bias vanishes as N1 goes to infinity, although the bias
might be significant for small values of N1 because its value
cannot be reduced by increasing the value of N2. In Sec. V,
we numerically validate the expansion in the theorem.

The expression for k2,n in (34) is linked to a significant
reduction in the variance with the importance-sampling estima-
tor, as the number of samples needed to accurately estimate the
RCU bound for a given confidence level grows as N2 ∝ √n,
rather than the typical growth N2 ∝ rcun

−1 in standard Monte
Carlo [10, Sec. 4.1], which would be exponential behaviour
in the code length n in our setting of a memoryless channel.

Our result (34) is valid under the assumption that
pepn(X, Y ) is a strongly non-lattice random variable with
a continuous and differentiable density, and that the terms
fpep(x, y, X) and frcu(X, Y ) have an integrable characteris-
tic function under the joint densities (5). Both assumptions are
plausible for the transmission of complex-valued modulations
over continuous-output channels considered in this work.

The two remaining subsections are respectively devoted to
deriving the bias k1,n and variance k2,n terms, and to proving
the asymptotic expansion (34).

A. Asymptotic Expansion: Bias

In this subsection, we carry out the asymptotic expansion of
the RCU bound estimator (29) up to the term with the factor
k1,n in (34) in order to characterize the bias of the estimator.

We start by computing the statistical mean E[ ˆrcun,N1,N2]
of the estimator of the RCU bound (29). For
importance-sampling purposes, pairs of channel input
and output samples (xi, yi) are generated according to (27).
For the analysis, however, it is more convenient to use
the relationship between untilted and tilted probability
densities (11) to compute the statistical mean E[ ˆrcun,N1,N2]
according to the joint probability density

Qn(x)Wn(y|x). (35)

Defining the random variable Z = (X, Y ) with density pZ(z)
in (35), the statistical mean E[ ˆrcun,N1,N2] is given by

E[ ˆrcun,N1,N2] = E
[
min{1, (M − 1) ˆpepn,N1

(Z)}]. (36)

This quantity does not depend on N2 and depends on N1

through the pairwise error probability estimator ˆpepn,N1
.

We next expand (36) in a series of inverse powers of N1.
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Making use of the observation that for a random variable
D and a uniform random variable U in [0, 1], it holds that

E[min{1, D}] = Pr[D ≥ U ], (37)

we may thus rewrite (36) after taking logarithms in both sides
of the inequality inside the probability as

E[ ˆrcun,N1,N2]=Pr
[
log(M − 1)+log ˆpepn,N1

(Z)≥ log U
]
.

(38)

We continue our analysis by focusing on ˆpepn,N1
for the

optimum tilting parameter τ̂n(z) in (23). Defining


 =
1√
N1

(39)

and using (8), it follows that the importance-sampling estima-
tor (22) converges as 
→ 0 to

ˆpepn,N1
(z) p−−−−−→

N1→∞ pepn(z)
(
1 + 
σpep(z)ΘN1

)
, (40)

where the sample estimation variance σ2
pep(z) is given by

σ2
pep(z) =

E
[
eκn,τ̂n(z)−τ̂n(z)�n(z,X)fpep(z, X)

]
E
[
fpep(z, X)

]2 − 1, (41)

and the random variable ΘN1 has a conditional density func-
tion pΘN1|Z(θ|z) that converges uniformly to the standard
normal density. The convergence is described by the degree-r
Edgeworth expansion [15, Ch. XVI.2]

pΘN1|Z(θ|z) = pΘ(θ) ·
(

1 +
r∑

k=3


k−2Pk(θ, z)

)
+ o(
r−2).

(42)

In (42), Pk(θ, z) are degree-k polynomials in θ that depend
on the moments of the summation terms in ˆpepn,N1

(z) and
on the Hermite polynomials [15, Ch. XVI.1] in θ. These
moments are assumed to exist, or equivalently, we assume
that the summation terms in ˆpepn,N1

(z) have an integrable
characteristic function under the distribution Qn(x).

Taking logarithms in both sides of (40) and doing a
Taylor expansion of order 2 in powers of 
, we find that
log ˆpepn,N1

(z) converges in probability to

log ˆpepn,N1
(z) p−−−−−→

N1→∞ log pepn(z) + Ξn(
, z, ΘN1) (43)

since the logarithm is a continuous function, and where

Ξn(
, z, θ) = 
σpep(z)θ − 1
2

2σ2

pep(z)θ2 + O(
3). (44)

Since the r.h.s. of (38) is a bounded and continuous function
of ˆpepn,N1

(z), the Mann-Wald continuity theorem [15, p. 431]
allows us to substitute (43) into (38). Grouping the summands
inside the probability, it proves convenient to define the
random variable An(Z, U), sometimes written simply as An

for the sake of compactness, as

An(Z, U) = log(M − 1) + log pepn(Z)− log U. (45)

With this definition, we find that the statistical mean of the
RCU bound estimator converges in probability to

E[ ˆrcun,N1,N2]
p−−−−−→

N1→∞ Pr
[
An(Z, U) + Ξn(
, Z, ΘN1) ≥ 0

]
.

(46)

The random variables An and Ξn have a joint density

pAn(a)pΞn|An
(ξ|a) = pZ(z)pU (u)pΘN1|Z(θ|z). (47)

Suppose that pAn(a) is a continuous differentiable density.
Under mild assumptions on the joint density of An and Ξn

given in (47), the asymptotic expansion as Ξn vanishes to
zero [19, Th. 1] implies that the r.h.s. of (46) satisfies

Pr[An + Ξn ≥ 0] = Pr[An ≥ 0] + pAn(0)E[Ξn|An = 0]

+
1
2
p′An

(0)E[Ξ2
n|An = 0] + O(Ξ3

n). (48)

First, notice that using (37) in the first term of the r.h.s. of (48)
directly yields the RCU bound in (1), i.e.

Pr
[
An ≥ 0] = 1− PAn(0) = rcun, (49)

where PAn(a) denotes the cumulative distribution of An.
We conclude that, as 
→ 0 or equivalently N1→∞, the RCU
bound estimator becomes asymptotically unbiased.

The properties of the Hermite polynomials [15, Ch. XVI.1]
imply that ∫ ∞

−∞
pΘ(θ)θP3(θ, z) dθ = 0. (50)

Hence, using (50) and the fact that pΘ(θ) is the density of
the standard normal random variable, it follows that under the
conditional density expansion (42) for r = 3 the remaining
expectations in the r.h.s. of (48) are asymptotically given by

E[Ξn|An = 0] = −1
2

2ηn + O(
3) (51)

and

E[Ξ2
n|An = 0] = 
2ηn + O(
3), (52)

where we defined

ηn = E
[
σ2

pep(Z)|An = 0
]
. (53)

Noting that O(Ξ3
n) = O(
3) we obtain as 
→ 0 that

E[ ˆrcun,N1,N2]
p−−−−−→

N1→∞ rcun(1− k1,n
2), (54)

where the parameter k1,n is given by

k1,n =
1
2
ηn

pAn(0)− p′An
(0)

1− PAn(0)
. (55)

It remains to characterize asymptotically, as n → ∞,
the quantities p′An

(0), pAn(0), PAn(0), and ηn. For memo-
ryless channels, the variable An behaves asymptotically as the
sum of n independent random variables. Standard asymptotic
results in the approximation of the density of a strongly
non-lattice random variable An [20, Ch. 2.2] show that as
n→∞

lim
n→∞

pAn(a)
p̂An(a)

= 1, (56)

where p̂An(a) is the saddlepoint approximation to the density
of An at a. The saddlepoint ŝn is the unique solution to

ŝn = argmin
0≤s≤1

ϕn(s)− sa, (57)
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where ϕn(s) is the cumulant generating function of An; the
random variable log U in (45) limits the region of convergence
of ϕn(s) to the [0, 1] interval. A similar analysis can be carried
out to show that the upper tail probability and the derivative
of the density respectively satisfy

lim
n→∞

1− PAn(a)
1
ŝn

p̂An(a)
= 1, (58)

and

lim
n→∞

p′An
(a)

−ŝn p̂An(a)
= 1, (59)

for the same saddlepoint ŝn in (57). Noting the relationship
in (49) between the random variable An and rcun and using the
asymptotic equivalence in (33), large-deviation theory results
imply that

lim
n→∞

ϕn(s)
χn(s)

= 1 (60)

and therefore

lim
n→∞

ŝn

ρ̂n
= 1. (61)

We recall that ρ̂n is the optimal tilting parameter used in the
importance-sampling estimator of the RCU bound. Combining
the limits (56), (58) and (59), it follows that

lim
n→∞

1
ρ̂n(1 − ρ̂n)

pAn(0)− p′An
(0)

1− PAn(0)
= 1. (62)

Since 0 ≤ ρ̂n ≤ 1 and ηn ≥ 0, by combining (62) and (55)
we conclude that k1,n is a non-negative term. For memoryless
channels, the optimal tilting parameter satisfies ρ̂n = O(1)
[18, Ch. 5.6]. Therefore, together with (62), we have that

pAn(0)− p′An
(0)

1− PAn(0)
= O(1). (63)

In the last part of this subsection, we study the asymptotics
of ηn as n → ∞. This quantity is a conditional expectation
of the sample estimation variance σ2

pep(z) given in (41).
Noting that E

[
fpep(z, X)

]
= pepn(z), we start by studying

the asymptotics of pepn(z), whose square appears in the
denominator of σ2

pep(z). Refined asymptotic results in the
approximation of the tail probability of a sum of strongly
non-lattice random variables [20, Eq. (2.2.6)] show that

pepn(z) =
1√
n

eκn,τ̂n(z)+O(1) (64)

uniformly in z, where κn,τ̂n(z) is the cumulant generating
function (18) evaluated at the optimal tilting parameter (23).
The asymptotics of E

[
fpep(z, X)

]2
are thus obtained by

squaring (64), namely

E
[
fpep(z, X)

]2 =
1
n

e2κn,τ̂n(z)+O(1). (65)

For the remaining terms in σ2
pep(z), we note that the

numerator is a tilted tail probability that can be written as

Ωn(z)eκn,τ̂n (z)+κn,−τ̂n(z), (66)

where Ωn(z) is a quantity given by

Ωn(z) = Pr
[
�n(z, X) ≥ 0

]
(67)

and computed under the tilted conditional density

p̄X|Z(x|z) = Qn(x)e−τ̂n(z)�n(z,x)−κn,−τ̂n(z). (68)

Let βn(t, z) be the cumulant generating function of �n(z, X)
under the density (68). After some manipulations, we obtain
that βn(t, z) is related to κn,τ (z) as

βn(t, z) = κn,t−τ̂n(z)− κn,−τ̂n(z). (69)

Finding the refined asymptotics for the upper-tail probability
Ωn(z) given by (67) involves computing the unique minimizer

t̂n(z) = argmin
t≥0

βn(t, z) (70)

in the region of convergence of βn(t, z), given by [0,∞).
From (69) and (23), it is given by

t̂n(z) = 2τ̂n(z). (71)

Therefore, as n→∞, we obtain using [20, Eq. (2.2.6)] that

Ωn(z) =
1√
n

eκn,τ̂n(z)−κn,−τ̂n(z)+O(1). (72)

Combining (72) with (66), we obtain that the numerator of the
pairwise error probability sample variance satisfies

E
[
eκn,τ̂n(z)−τ̂n(z)�n(z,X)fpep(z, X)

]
=

1√
n

e2κn,τ̂n(z)+O(1).

(73)

Using the asymptotic equalities (73) and (65) into (41),
we obtain that σ2

pep(z) = O(
√

n) uniformly in z. Since ηn is
the conditional expectation of σ2

pep(z) given by (53), we find
that

ηn = O(
√

n). (74)

Equations (63) and (74) used in the definition of the term
k1,n in (55), together with (54), imply that for sufficiently
large code length n and number of samples N1, the expected
value of ˆrcun,N1,N2 satisfies

E[ ˆrcun,N1,N2]
p−−−−−→

N1→∞ rcun

(
1− k1,n

N1

)
, (75)

where k1,n is a parameter that grows with n as O(
√

n). This
proves the asymptotic expansion (34) as N1→∞ of the RCU
bound estimator (29) up to the term with the factor k1,n.

B. Asymptotic Expansion: Variance

In this subsection, we extend the asymptotic expansion of
the RCU bound estimator (29) to the term with the factor k2,n

in (34) to characterize the variance of the estimator.
To start with, we note that the Lindeberg condition for

the central-limit theorem [15, p. 262] is satisfied and that
ˆrcun,N1,N2 is given by a sum of N2 independent terms.

Therefore, in an analogous manner to (8), we have

ˆrcun,N1,N2

p−−−−−→
N2→∞ E[ ˆrcun,N1,N2]

(
1 +

σrcu√
N2

Θ

)
, (76)
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where now from (16) we have

σ2
rcu =

E
[
eςn(ρ̂n)−ρ̂ngn(Z)f2

rcu(Z)
]

E
[
frcu(Z)

]2 − 1. (77)

As in the previous subsection, we have chosen the optimum
tilting parameter ρ̂n in (32).

We are interested in characterizing the asymptotics of (77)
as n→∞. We first focus on the numerator in the r.h.s. of (77).
Using (31) and that min[1, D]2 = min[1, D2] for D ≥ 0,
the numerator can be rewritten as

Ψneςn(ρ̂n)+ςn(−ρ̂n), (78)

where Ψn is a quantity given by

Ψn = E
[
min

{
1, (M − 1)2 ˆpepn,N1

(Z)2
}]

(79)

computed under the tilted density

p̄Z(z) = pZ(z)e−ρ̂ngn(z)−ςn(−ρ̂n). (80)

Mimicking the steps followed to derive (46), we use the
identity E[min{1, D}] = Pr[D ≥ U ] in (37), take logarithms
on both sides of the inequality inside the probability, and
substitute the expansion (43) in inverse powers of N1 for
log ˆpepn,N1

to show that Ψn converges in probability as

Ψn
p−−−−−→

N1→∞ Pr
[
Bn(Z, U) + Ξn(
, Z, ΘN1) ≥ 0

]
, (81)

where 
 is given in (39), Bn is related to An in (45) as

Bn(Z, U) = 2An(Z, U) + log U (82)

and Ξn is given by (44). The tail probability in (81) is
computed under the joint density

p̄Z(z)pU (u)pΘN1|Z(θ|z), (83)

where pΘN1|Z(θ|z) has the Edgeworth expansion (42).
Using the asymptotic expansion from [19, Th. 1], as we did

in our analysis of (48), and using again the properties of the
Hermite polynomials [15, Ch. XVI.1] in an analogous manner
to the steps leading to (51) and (52), we find that as 
→ 0

Ψn
p−−−−−→

N1→∞ Pr
[
Bn ≥ 0

]
+ O(
2). (84)

We next turn our attention to the denominator in the r.h.s.
of (77), which we identify as E[ ˆrcun,N1,N2]2. Taking squares
in the expansion in (75) we find that the squared value of
E[ ˆrcun,N1,N2] converges in probability as N1→∞ to rcu2

n as

E[ ˆrcun,N1,N2]
2 p−−−−−→

N1→∞ rcu2
n + O(
2). (85)

Using (84), (85), and (78) in the formula for σ2
rcu in (77),

we obtain the asymptotic expansion

σ2
rcu

p−−−−−−−→
N1,N2→∞ k2,n + O(
2), (86)

where k2,n is given by

k2,n =
Pr
[
Bn ≥ 0

]
rcu2

n

eςn(ρ̂n)+ςn(−ρ̂n) − 1. (87)

In our next step, we study the asymptotics of k2,n in (87) as
n→∞. We start by studying rcun, whose square appears in
the equation. Refined asymptotic results in the approximation

of the tail probability of a sum of strongly non-lattice random
variables for non-singular memoryless channels [11, Th. 1]
show that the RCU bound (1) satisfies as n→∞

rcun =
1√
n

eςn(ρ̂n)− 1
2 ρ̂n log n+O(1), (88)

where χn(ρ) and ρ̂n are respectively given by (26) and (32).
Roughly speaking, equation (88) can be obtained by plugging
the refined asymptotics of the pairwise error probability given
by (64) into the definition of An in (45), computing the
cumulant generating function of An using the definitions
in (25) and (26), and employing [20, Eq. (2.2.6)] for the
tail probability rcun = Pr[An ≥ 0]. The additional term in
the exponent of (88) is the contribution of the 1√

n
prefactor

in (64). The asymptotics of rcu2
n are obtained by squaring (88),

namely

rcu2
n =

1
n

e2ςn(ρ̂n)−ρ̂n log n+O(1). (89)

For the asymptotics of the tail probability Pr
[
Bn ≥ 0

]
,

we exploit the identity (82) to obtain a similar expansion
to (88). To this end, let ξn(λ) denote the cumulant generating
function of Bn, computed under the joint density (83), and let
Ln be the corresponding region of convergence. Also, let λ̂n

denote the optimizer of the cumulant generating function,

λ̂n = argmin
λ∈Ln

ξn(λ). (90)

The equivalent to (88) for the tail probability Pr[Bn ≥ 0]
involves plugging the refined asymptotics of the pairwise error
probability given by (64) into the definitions of An and Bn

in (45) and (82) respectively, and computing the cumulant
generating function of Bn under the joint density (83). As a
result, we obtain that

ξn(λ) = χn(2λ− ρ̂n)− χn(−ρ̂n)− λ log n + O(1). (91)

Similarly to (89), the log n term in (91) is the contribution of
the 1√

n
prefactor of (64). Using (32), it follows that

λ̂n = ρ̂n + o(1), (92)

where ρ̂n is the optimal tilting parameter used in the
importance-sampling estimator of the RCU bound. Using (91)
and (92) in [20, Eq. (2.2.6)], we find that

Pr
[
Bn ≥ 0

]
=

1√
n

eςn(ρ̂n)−ςn(−ρ̂n)−ρ̂n log n+O(1). (93)

Finally, substituting (93) back in (87) the resulting expres-
sion together with (89), and simplifying the formula, we find
that k2,n grows with n as O(

√
n). Combining this asymptotics

with (86) and (75) into (76), we obtain (34).

V. CODED BPSK MODULATION

A case of interest is the binary phase-shift keying (BPSK)
modulation with symbol set X = {−√P , +

√
P}, where P is

a positive number describing an average power constraint. We
study the achievable error probability of coded BPSK modula-
tion over both the additive white Gaussian noise (AWGN) and
the i.i.d. Rayleigh fading channels. Both cases are examples

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore.  Restrictions apply. 



296 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 1, JANUARY 2020

of continuous-output channels with continuous and differential
conditional probability densities for which the required con-
ditions on fpep(x, y, X) and frcu(X, Y ) for the theorem in
Sec. IV are satisfied.

A. AWGN Channel

A codeword x is sent over the AWGN channel

y = x + w, (94)

where w is an i.i.d. real-valued zero-mean Gaussian noise with
variance σ2, and we assume perfect synchronization and a
coherent receiver. From (94), it follows that

Wn(y|x) =
n∏

i=1

1√
2πσ2

e−
(yi−xi)

2

2σ2 , (95)

where xi and yi now denote the ith symbol of x and y, respec-
tively. Thanks to the symmetry of BPSK, the input distribution
Qn(x) that optimizes both the exponential decay (33) and the
channel capacity Cb is the uniform distribution

Qn(x) =
1
2n

. (96)

For coding rates Rb < Cb, where Cb is the channel capac-
ity [18, Eq. (2.2.8)], the RCU bound (1) decays exponentially
fast since χn(ρ̂n) < 0 for 0 < ρ̂n ≤ 1 [18, Eq. (5.6.27)]. For
fixed P and σ2, the coded average Eb/N0 ratio is defined as

Eb

N0
=

P

σ2
· 1
2Rb

. (97)

Monte-Carlo evaluation of the RCU bound to the error
probability (1) would involve generating triplets (x, y, x)
according to the joint distribution Qn(x)Wn(y|x)Qn(x), and
declaring a decoding error occurs if the codeword x has a
higher decoding metric than x, i.e., if Wn(y|x) ≥Wn(y|x).

With importance sampling, we need the distributions
P̄n

τ (x|y) and W̄n
ρ (y|x). For a given pair of x and y, the cumu-

lant generating function κτ (x, y) is given from (18) as

κn,τ(x, y) =
n∑

i=1

log
(

e−
τ(yi−

√
P )2

2σ2 + e−
τ(yi+

√
P )2

2σ2

)

+
τ

2σ2

n∑
i=1

(yi − xi)2−n log 2. (98)

Hence, the conditional distribution P̄n
τ (x|y) for the estimation

of the pairwise error probability is given from (19) by the
following product distribution

P̄n
τ (x|y) =

1
μn,τ(y)

n∏
i=1

e−
τ(yi−xi)

2

2σ2 , (99)

where μn,τ(y) is a normalizing factor.

Fig. 1. Empirical probability density of ˆrcun,N1,N2 over the AWGN
channel, for code length n = 128, code rate Rb = 0.5, and Eb/N0 = 4 dB.

Upon substituting (96) and (95) into (26), the error exponent
χn(ρ) is given by (100), at the bottom of the page. As a result,
the tilted distribution in (27) involves Qn(x), the distribution
in (96), and the tilted conditional distribution W̄n

ρ (y|x)

W̄n
ρ (y|x) =

1
μn

ρ

n∏
i=1

e
− (yi−xi)

2

2(1+ρ)σ2 ·
(
e
− (yi−

√
P )2

2(1+ρ)σ2 + e
− (yi+

√
P)2

2(1+ρ)σ2

)ρ
,

(101)

with normalizing factor μρ.
Importance sampling for coded BPSK in AWGN chan-

nels involves generating codewords with equiprobable BPSK
symbols, and generating channel outputs according to the
equivalent channel transition probability W̄n

ρ (y|x). Even
though (101) is not a standard probability distribution, samples
can be efficiently generated using the rejection method [21,
Ch. II.3]. For a given channel output y, the pairwise error
probability is estimated by drawing n BPSK symbols from
the binary product distribution (99).

We now proceed to consider several numerical examples.
We first fix the code length to n = 128, the rate Rb = 0.5
bits per channel use and the coded Eb/N0 = 4 dB, and show
in Fig. 1 a smoothed-kernel density estimation [22] of the
importance sampler ˆrcun,N1,N2 for several sampling sizes N1

and N2. We do not consider the Monte Carlo estimation, since
it would require at least N2 ≈ 109 samples. As we increase
both N1 and N2, the both the estimation bias and variance are
reduced, in accordance with (34).

To validate the growth of the bias and variance terms of (34)
as n increases, we obtain empirical estimates of k1,n and k2,n.
For every value of n, we set N2 = 1000, run Algorithm 1 for
several values of N1, and find the best interpolated value of
k1,n in accordance to (34) neglecting the k2,n term. For k1,n,

χn(ρ) = nρ log(M − 1)− n

2
log(2πσ2)− n(1 + ρ) log 2 + n log

∫ ∞

−∞

(
e
− (y−√

P )2

2(1+ρ)σ2 + e
− (y+

√
P)2

2(1+ρ)σ2

)1+ρ

dy (100)
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Fig. 2. Empirical bias k1,n and variance k2,n terms versus n over the
AWGN channel, for code rate Rb = 0.5. Dashed lines represent the

√
n

interpolation.

Fig. 3. Error probability versus Eb/N0 over the AWGN channel, for code
length n = 128, code rate Rb = 0.5, and N1 = N2 = 500 samples.

we run the algorithm at N1 = 1000 and N2 = 1 several times,
compute the sample variance and normalized it according
to (34). Fig. 2, plotting k1,n and k2,n against the codeword
length n for a rate Rb = 0.5 bits per channel use at several
coded Eb/N0 ratios, confirms that both terms grow as

√
n.

In the remainder in this subsection, we take N1 = N2 =
500. As we detailed in Sec. II, the error probability of the
optimal code is, at most, the RCU bound. Similarly, using
sphere-packing arguments, Shannon established that every
code transmitted over the AWGN channel is lower bounded by
[1, Eq. (15)]. Therefore, the error probability of good binary
codes must lie between the RCU bound and the Shannon lower
bound. This region is shaded in gray in the following figures.

In Fig. 3, we depict the coded error probability region with
high performance codes [23] for code length n = 128, and
rate Rb = 0.5, versus the Eb/N0 ratio. We include examples
of LTE codes (turbo code with 8 states), 5G codes (NR BG 2),
polar codes (CRC-7 and L = 32), LDPC codes (F256 and OSD
t = 4), BCH codes (extended OSD t = 4) and TBCC codes
(m = 14). For such a small code length, TBCC codes exhibit
good performance, even though there must exist codes with a

Fig. 4. Error probability versus n over the AWGN channel, for code rate
Rb = 0.5, N1 = N2 = 500 samples, and several values of Eb/N0.

performance, at most, the RCU bound. Similar conclusions can
be obtained from Fig. 4, plotting the coded error probability
versus the block length n for varying Eb/N0.

B. Rayleigh Channel

A second case of interest is the i.i.d. Rayleigh fading
channel. For a transmitted codeword x = (x1, . . . , xn) ∈
{−√P , +

√
P}n the received sequence y = (y1, . . . , yn) is

yi = hixi + wi, (102)

where w = (w1, . . . , wn) is an i.i.d. real-valued zero-mean
Gaussian noise with variance σ2, and h = (h1, . . . , hn) is
i.i.d. Rayleigh distributed with density

pn(h) =
n∏

i=1

2hie
−h2

i1{hi ≥ 0}. (103)

Since E[h2
i ] = 1, the coded average Eb/N0 ratio remains (97).

Assuming perfect channel state information at the receiver
(CSIR), the RCU bound to the error probability, averaged over
the i.i.d. Rayleigh fading, is given by the expression

rcun =
∫

pn(h)Qn(x)Wn(y|x, h)·
·min

{
1, (M − 1)pepn(x, y, h)

}
dxdydh, (104)

where Qn(x) and pn(h) are respectively given by (96)
and (103), the channel conditional probability density function
Wn(y|x, h) is now given by

Wn(y|x, h) =
n∏

i=1

1√
2πσ2

e−
(yi−hixi)

2

2σ2 . (105)

In (104), the pairwise error probability for a fixed transmitted
codeword x, received sequence y and fading realization h,
denoted as pepn(x, y, h), reads

pepn(x, y, h) =
∫

Qn(x)1{�n(x, y, h, x) ≥ 0} dx (106)

for the log-likelihood ratio function

�n(x, y, h, x) = log
Wn(y|x, h)
Wn(y|x, h)

. (107)
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The importance-sampling estimator of the RCU bound to
the error probability (104) is analogous to the case without
fading and involves generating the quadruplet (x, y, x, h)
according to the exponentially-tilted joint distribution

pn(h)Qn(x)W̄n
ρ (y|x, h)P̄n

τ (x|y, h), (108)

with the conditional distribution P̄n
τ (x|y, h) for the pairwise

error probability given by the product distribution

P̄n
τ (x|y, h) =

1
μn,τ(y, h)

n∏
i=1

e−
τ(yi−hixi)

2

2σ2 , (109)

where μn,τ(y, h) is the corresponding normalizing factor, and
W̄n

ρ (y|x, h) is the tilted channel conditional distribution

W̄n
ρ (y|x, h) =

1
μn

ρ

n∏
i=1

e
− (yi−hixi)

2

2(1+ρ)σ2

·
(

e
− (yi−hi

√
P)2

2(1+ρ)σ2 + e
− (yi+hi

√
P )2

2(1+ρ)σ2

)ρ

(110)

with μρ the corresponding normalizing factor. Observe that
the fading realization h is generated according to the original
Rayleigh distribution (103) as, similarly to the case without
fading, the exponential tilting of the outer expectation of the
RCU (104) only affects the conditional distribution of the
received sequence y, while leaving the remaining distributions
unaltered. The tilting parameters τ and ρ needed in (109)
and (110) are optimally selected as the minimizers

τ̂n(x, y, h) = argmin
τ≥0

κn,τ (x, y, h) (111)

and

ρ̂n = arg min
0≤ρ≤1

χn(ρ), (112)

where the cumulant generating functions κn,τ (x, y, h) and
χn(ρ) are respectively given as

κn,τ (x, y, h) =
n∑

i=1

log
(

e−
τ(yi−hi

√
P)2

2σ2 + e−
τ(yi+hi

√
P )2

2σ2

)

+
τ

2σ2

n∑
i=1

(yi − hixi)2−n log 2 (113)

and by (114), at the bottom of the page. The nested
importance-sampling estimator for the i.i.d. Rayleigh fading
channel is summarized in pseudo-code in Algorithm 2 on the
top of the page, where by extension we defined

gn(x, y, h) = log(M − 1) + κn, 1
1+ρ

(x, y, h). (115)

Similarly to the AWGN case, we include an error probability
lower bound, the improved sphere-packing bound [24, Th. 3.1]
valid for discrete-input continuous-output symmetric channels
such as the i.i.d. Rayleigh fading channel described in (102).

Algorithm 2 Importance-Sampling Estimate of the RCU
Bound for BPSK Modulation Over the i.i.d. Rayleigh
Fading Channel

Input: Qn(x), Wn(y|x), pn(h), n, Rb, N2 and N1

Output: ˆrcu
calculate M = 	2nRb
;
calculate χn(ρ) from (114);
select ρ← argmin0≤ρ≤1 χn(ρ);
find W̄n

ρ (y|x, h) from (110);
α← 0;
for i = 1; i ≤ N2 do

generate (xi, yi, hi) according to
pn(h)Qn(x)W̄n

ρ (y|x, h);
compute κn,τ (xi, yi, hi) from (113);
select τ ← arg minτ≥0 κn,τ (xi, yi);
find P̄n

τ (x|y, h) from (109);
γ ← 0;
for j = 1; j ≤ N1 do

generate xj according to P̄n
τ (x|yi, hi);

γ ←
γ + 1

N1
e−τ ·�n(xi,yi,hi,xj)1

{
�n(xi, yi, hi, xj) ≥ 0

}
;

end
ˆpep← γ · eκn,τ (xi,yi,hi);

α← α + 1
N2

e−ρ·gn(xi,yi,hi) min{1, (M − 1) ˆpep};
end
ˆrcu← α · eςn(ρ);

return ˆrcu;

Fig. 5. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code rate Rb = 0.5, N1 = N2 = 500 samples, and several code lengths n.

We take N1 = N2 = 500 to estimate the RCU
bound (104) using the importance-sampling Algorithm 2.
In Fig. 5, we depict the coded error probability region against
the coded Eb/N0 for rate Rb = 0.5, several codeword

χn(ρ) = nρ log(M−1)−n

2
log(2πσ2)−n(1 + ρ) log 2 + n log

∫ ∞

0

∫ ∞

−∞
2he−h2

(
e
−(y−h

√
P)2

2(1+ρ)σ2 + e
−(y+h

√
P)2

2(1+ρ)σ2

)1+ρ

dydh (114)

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore.  Restrictions apply. 



FONT-SEGURA et al.: IMPORTANCE SAMPLING FOR CODED-MODULATION ERROR PROBABILITY ESTIMATION 299

Fig. 6. Error probability versus Eb/N0 over the i.i.d. Rayleigh channel, for
code length n = 1024, N1 = N2 = 500 samples, and several code rates Rb.

lengths n. For n = 128, we obtain that RCU bound with
i.i.d. Rayleigh fading incurs a 3 dB loss in Eb/N0 compared
to the AWGN channel in Fig. 3. We also observe that the gap
to the error probability lower bound is higher in the presence
of i.i.d. Rayleigh fading. By setting n = 1024, we finally show
in Fig. 2 the coded error probability region against the coded
Eb/N0 for several rates above below channel capacity.

VI. CONCLUSION

In this paper, we have presented an importance-sampling
technique to estimate the achievable error probability, using
random coding arguments, for the transmission of coded data
over a continuous-output channel. Exploiting the exponential
decay of the error probability, we found closed-form expres-
sions for the optimal tilted distributions needed to generate
the samples of the two nested estimators involved. We studied
the convergence in probability of the estimator and illustrated
the transmission of the coded BPSK modulation over the
AWGN and i.i.d. Rayleigh fading channels. Our study gives an
estimate of the bias and variance of the estimator in terms of
the number of samples and the code length, thereby providing
guidance on the dimensioning of the nested estimators.
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