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Error Probability Estimation
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Abstract— This paper proposes an efficient simulation method
based on importance sampling to estimate the random-coding
error probability of coded modulation. The technique is valid for
complex-valued modulations over Gaussian channels, channels
with memory, and naturally extends to fading channels. The
simulation method is built on two nested importance samplers to
respectively estimate the pairwise error probability and generate
the channel input and output. The effect of the respective number
of samples on the overall bias and variance of the estimate of
the error probability is characterized. For a memoryless channel,
the estimator is shown to be consistent and with a small variance,
growing with the square root of the code length, rather than the
exponential growth of a standard Monte Carlo estimator.

Index Terms— Coded modulation, random coding, error
probability, Monte Carlo simulation, importance sampling.

I. INTRODUCTION

MPORTANCE sampling [2], an improved Monte Carlo

simulation in which samples are generated according to
tilted distributions, may significantly reduce the sampling
size in estimating the error probability of a communication
scheme [3]. For instance, the transmission of uncoded sym-
bols over the AWGN channel was studied in [4]-[6] with
importance sampling techniques, where sampling distributions
involve variance scaling and mean translations. Efficient sim-
ulation methods of high-performance codes were proposed in,
e. g., [7], [8] for low density parity check (LDPC) codes.

In this paper, we study the error probability in the detection
of coded-modulation signals. Currently, most powerful codes
such as polar codes, LDPC codes or turbo codes have large
code lengths, an assumption incompatible with the low-latency
and ultra-high reliability requirements for next-generation
wireless systems. Recently, Polyanskiy et al. [9] derived tight
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bounds to the error probability of random codes valid for
short code lengths. With random codes, a common tool used
in information theory to show the existence of good codes
at rates below the channel capacity, one studies the error
probability averaged over all possible randomly-generated
codes. Evaluating the random-coding error probability, rather
than that of a given code, becomes a useful tool to characterize
the performance of coded modulation, primarily in channels
where good codes are unexplored or unknown. We thus focus
on the random coding union (RCU) bound [9, Eq. (62)] to
describe the error probability of good codes of arbitrary length.

The exact computation of the RCU bound is cumbersome
even for short code lengths, as it involves high-dimensional
integrations; we address numerical simulation instead. Yet,
simulation of such small a quantity would require a number
of samples exponential in the code length to achieve an
acceptable level of precision [10]. To solve this rare-event sim-
ulation problem, we find an importance-sampling tilting that
explicitly exploits the known exponential decay of the RCU
bound with the code length to estimate the pre-exponential
factor of the coded error probability, instead of the full
probability.

The rest of the paper is organized as follows. In Sec. II,
we describe the error probability of random codes and outline
the computational challenges to calculate the RCU bound.
We present our efficient importance-sampling simulator of the
RCU bound in Sec. III, and derive closed-form expressions
of the optimal tilted distributions valid for any block coded
modulation. Our estimator consists of two nested importance
samplers, respectively related to the estimate of a pairwise
error probability and to the generation of the channel input and
output. In Sec. IV, we carry out an asymptotic performance
analysis for memoryless channels to describe the effect of
the number of samples on the overall bias and variance
of the nested estimator. We consider some examples with
coded binary phase-shift keying (BPSK) modulation over the
AWGN and the i.i.d. Rayleigh fading channels in Sec. V, and
summarize the main contributions of the paper in Sec. VI.

II. CODED-MODULATION ERROR PROBABILITY

Let C be a block code with M = 2* codewords &1, ..., x .
where k is the number of information bits. Each codeword
has n symbols drawn from a constellation X. The code rate
is given by Ry, = % bits per channel use. This code is used

0090-6778 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-0009-2545
https://orcid.org/0000-0002-5726-1223
https://orcid.org/0000-0003-2795-1124

290

for transmission over a channel with conditional probability
density W"(y|x), where the length-n sequence y represents
the equivalent baseband channel output. The error probability,
denoted by P.(C), is the probability of decoding in favor of a
codeword «; other than the transmitted one ,,, j # m.

The computation of P,(C) is challenging, due to the com-
plex code structure for large values of n, because of the expo-
nentially large number of messages M, or since good codes
themselves are unknown for small n. Instead of considering a
fixed code C, we study the error probability P, ,, averaged over
all codes of M codewords generated by independent drawings
from some input distribution @™(x). Shannon’s random coding
arguments show the existence of at least one good code whose
error probability is at most P, ., the expectation of P, (C) over
all possible codes. Evaluating P, ,, rather than P.(C) is not
only of theoretical importance but also serves as a performance
benchmark for the designers of good codes.

A minor relaxation of the probability P, ,, is given by the
random coding union (RCU) bound to the random coding error
probability [9, Eq. (62)], satisfying F. ,, < rcu,, where

reu,=[ Q"(x)W"(yle) min{1, (M — 1)pep,,(x, y) } dzdy.
(1)

In (1), the pairwise error probability pep,,(z,y) is the proba-
bility that the decoder decodes in favor of another independent
random codeword x for fixed transmitted codeword x and
received sequence y, i.e.,

pep,(,y) = / Q@1 {l(z,y. ) > 0} dE, ()

and 1{-} is the indicator function taking the value one if the
condition is satisfied and zero otherwise, and ¢,(x,y,T) is
the log-likelihood ratio
) — 1o VWl
ln(z,y,T) = log Wtylz)”
In short, the RCU bound characterizes the error probability of
good codes with rate Ry, and length n, whose error probability
is as good as the right-hand side (r.h.s.) of (1).
The expressions for rcu, and pep,(x,y) in (1) and (2)
respectively are both given by an expectation of a non-negative
function f(z) of some random variable Z with density P(z),

pn =E[f(Z)], )

where from now on we write the expectation operation as E[-]
for the sake of compactness. Evaluating the expectation in (1)
involves integrations over joint probability densities

Q" ()W (y|x)Q"(T), )

which is complex even for simple channels and moderate
values of n. Instead of resorting to approximations (e.g.,
[11]-[14]), we explore fast and accurate simulation to esti-
mate (1). While the proposed estimator is valid for generic
channel law W"(y|x) and input Q"(x), we restrict our
analysis to memoryless channels with product input distrib-
utions, for which W"(y|z) = [[;—, W (y;|z:) and Q™(x) =
I, Q).

3)
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III. IMPORTANCE SAMPLING

The standard Monte Carlo estimate of a quantity p, as
in (4), denoted by p, n, involves generating N samples,
z1,...,2N, according to P(z) and computing the average

N

Pn.N = % Z f(zi). (6)
=1

By construction, p,, is the mean of each summand in (6).

We also define 03 to be the variance, normalized to the squared

mean, of each summand in (6).

In order to describe the accuracy of an estimator in
approaching the exact value of the quantity p,, as NV increases,
we make use of the notion of convergence in probability. Two
sequences of random variables Ay and By indexed by N are
said to converge in probability if for all € > 0, it holds

lim Pr[|Ay — By| > €] =0. 7
N —o0

We denote the convergence in probability by Ay ﬁ By.

Using the central limit theorem [15, Ch. XV.5], as N — oo
the estimator p,, converges in probability to

)2 On
N Pr <1 + \/NGN) :
where and O has a probability density that converges uni-
formly in 6 to the density pe(6) of a standard normal random

variable ©. Equivalently, the relative error converges to a
normal random variable with zero mean and variance o2 /N,

@)

ﬁn,N

ﬁn,N — Pn P On
Pn N—oo vIN

The Monte Carlo estimator p, y is unbiased since its
expected value coincides with the quantity to be estimated,
namely p,,. Besides, when f(z) in (6) is an indicator function,
using (9) and the fact that the variance o2 is normalized to the
squared mean, i. e. pfb, we infer that the number of samples
needed to estimate p,, to a given confidence level grows as
N  p, 1, [10, Sec. 4.1].

Alternatively, importance sampling is a variance-reducing
estimation technique that involves the generation of i.i.d. sam-
ples from another distribution P(z) [2] to estimate p,, as

O. )

N
. 1
N =5 D w(zi)f(z0), (10)
i=1
where the weights w(z) account for the distribution mismatch
and are given by w(z) = P(z)/P(z). A good choice for P(z)
is known to be the exponential tilting [10]. For any s > 0 and
a certain function g,(z), define the tilted distribution
(2) = P(z)e®9n(2)=rnls)

P,

5,9

Y

where k,,(s) is the cumulant generating function [16] of g,,(2),

Kn(8) = logE[esg"(z)}7 (12)
and the weights are given by
W g(z) = e 759n(2) (13)

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.



FONT-SEGURA et al.: IMPORTANCE SAMPLING FOR CODED-MODULATION ERROR PROBABILITY ESTIMATION 291

Roughy speaking, the importance-sampling estimator
approximates the pre-exponential factor ., in the quantity
Pn = ap(s) - efn(s) by G, N, instead of directly estimating p,.
Hence, the importance-sampling estimator (10) becomes

Py = G (s) e (14)
where &y, n(s) is given by
N (s) = e ieﬂgvizﬂf(zi) (15)
’ N=

and the samples z; are independently drawn from P ,(z).
The importance-sampling estimator (14) is unbiased

[10, Sec. 4.2] with a normalized sample variance given by

) _ Bfen (@) (2)7] -

O'n: B}

D

The limit in (8) remains valid with a normalized sample vari-
ance that is now reduced by properly choosing the parameters
s> 0 and g,(2z). A good choice of s is the minimizer of the
cumulant generating function x,(s), i.e.,

(16)

$p, = argmin k,(s).
s>0

a7)

A. Pairwise Error Probability

For the importance-sampling estimate of the pairwise error
probability in (2) with integration variable &, we select g,,(T)
to be the log-likelihood ratio in (3), g,(T) = ln(x,y,@).
As mentioned at the end of this subsection, this choice
helps capturing the correct exponential decay of the pairwise
error probability in terms of n for memoryless channels. The
corresponding cumulant generating function is given by

T~Zn(w,y,7)] )

finr(z,y) = logE[e (18)

For this choice, the tilted distribution P, (Z|y) in (11) for the
estimation of pep,,(x,y) can be explicitly computed as

Q@W )
/ Q™ (x" YW (y|z') dx’

Pl (@ly) = (19)

While the log-likelihood ¢,(x,y,®) depends on the channel
input x, this conditional distribution for the codeword T
depends only on the channel output y.

The importance-sampling estimator of the pairwise error
probability draws N; independent samples T;, for j =
1,..., Ny, from the probability distribution (19) to compute

Ny
~ 1 —T7Ap(x,y,T; -
77,N1(w7y) = ﬁlze bn(@y, J)fpep(wavaj)v (20)

j=1
where
Foep(@,y, @) = 1{ln(x, y,7) > 0}, @1
to generate the final estimate
PP, n, (,Y) = Jrm (@, y) @V (22)

Based on (17), we select 7 = 7,,(x,y) given by

7A-n(wa y) = arg min Kn,r (a:, y) (23)
7>0

Both the optimal parameter 7 used in the function &, - (z, y)

and the estimator 4 n, depend on x,y. Yet, we henceforth

drop the dependence on x,y in 7, to lighten the notation.

For the optimal choice of 7,, it follows from basic results

in large-deviation theory [17, Th. 2.2.3] that for memoryless

channels the pairwise error probability (2) behaves as
1

n—0oo "fn,i'n(wa y)

B. Random-Coding Error Probability

For the importance-sampling estimate of the random-coding
union bound in (1), an expectation with respect to the integra-
tion variables « and y, we choose

gn(wvy) = 1Og(M - 1) + K, li (wvy)a (25)

where /@n?ﬁ(sc,y) is given in (18). We can compute the

cumulant ger;)erating function x,(p) of g.(x,y) as

(B X)) Y] Y
W U( Wn(Y | X) T )]'(26)

Xn(p) = logE

From (11), the distribution used for generating the pair of
samples (x;,y;) is given by

Pl(z,y) = Q"(@)W](y|z), @7
where W' (ylx) is a tilted channel transition probability,
— p
] Wr(yle) T (B (y[X) ™))
Wi(yle) = (28)

[ (ewmw1x) ™) ay

Equation (27) implies that the channel input sequences x; are
generated with the original random-coding distribution Q™ ()
from Sec. II, whereas the channel output sequences y, are
drawn from the modified channel transition probability (28).
Finally, the importance-sampling estimator for the RCU
based on the independently generated pairs of samples x;, y;,
for : = 1,..., No, from the probability distribution (27) is

réuT},7N17N2 = dn,NhNQ(p) : eXn(/))7 (29)
where
1
dn,Nth(p) = E Z eip.g"(wi’yi)frcu(wiv yz’) (30)
i=1
and
freu(®,y) = min{1, (M — 1)pép,, n,(z,y)}.  (31)

Based on (17), and taking into account that the cumulant
generating function (26) gives the random-coding exponent
[18, Sec. 5.6], we select p as

fpn = argmin x, (p). (32)

0<p<1
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Algorithm 1 Importance-Sampling Estimate of the RCU
Bound
Input: Q™(x), W™(y|x), n, Ry, N2 and Ny
Output: rcu
calculate M = |2 |;
calculate x,,(p) from (26);
select p « argming<,<1 Xn(p);
find W' (y|z) from (28);
o« 0;
for i = 1;7 < Ny do
generate (;,y,) according to Q™(x)W [ (y|z);
compute Ky, - (x;,y;) from (18);
select 7 «— argmin, o k.- (i, Y;);
find P(z|y,) from (19);
70
for j =1;7 < Njdo
generate T; according to P*(Z|y;);
L ¥e—=v+ Nile—T'ﬁn(wmwai)]l{En(wi, yivij) > 0};

pép «— v - efnr (@iy:)
o — o+ NLQe’p'gn(m“yf) min{1, (M — 1)pép};

réu «— o - eXn(p);
return réu;

For the choice of p,, it follows from basic results in
large-deviation theory [17, Th. 2.2.3] that for memoryless
channels

. logrcu,
lim ———
n=00 Xn(pn)
The nested importance-sampling estimator is summarized
in pseudo-code in Algorithm 1 on the next page. In summary,
the channel W"(y|x), the random-coding input distribution
of @™(x), and the information rate Ry jointly determine
the outer tilting parameter p,,, while auxiliary codewords are
generated in accordance to the inner tilting parameter 7,,(x, y)
for a given channel input and output pair x,y. As expected,
the algorithm extends the classical Monte Carlo method, which
can be recovered by setting p,, = 7, = 0.

=1 (33)

IV. PERFORMANCE ANALYSIS

In the previous section, we presented in Algorithm 1 an
importance-sampling estimator for the RCU bound in (1).
Built from two nested estimators, the mapping from the
general tilting for importance sampling discussed at the begin-
ning of Sec. III was relatively straightforward and led to the
respective tilting parameters 7,, and p,, given in (23) and (32).

In contrast, the performance analysis is subtler, since the
outer estimator réuy,, n, N, is the sum of Ny independent terms
freu(i,y;) in (31), each of them a nonlinear function of the
inner estimator pép,, y,(x;,y;). As one estimator is nested
inside the other, a more refined analysis than the central-limit
theorem is needed to study the consistency, bias, and variance
of Algorithm 1. In this section, we derive an asymptotic
expansion of our estimator for memoryless channels and large
values of N7 and No, as summarized in the following theorem.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 1, JANUARY 2020

Theorem 1: For memoryless channels, as both numbers of
samples Ny and N» tend to infinity the importance-sampling
estimator of Algorithm 1 converges in probability to the exact
RCU bound rcu,, according to

A~ P B )
ICUn, Ny N2 o TCUR <1 - T1 + E@), (34)

where ki, and ko, are positive numbers growing with n as
O(y/n), and © is the standard normal random variable.

The positive term k;, in (34), linked in Sec. IV-A to
the variance of the estimate of the pairwise error probability
pép,, n,(x,y), induces a negative bias in the estimation of
the RCU bound. The estimator is asymptotically consistent,
as the bias vanishes as /N1 goes to infinity, although the bias
might be significant for small values of N; because its value
cannot be reduced by increasing the value of No. In Sec. V,
we numerically validate the expansion in the theorem.

The expression for ko, in (34) is linked to a significant
reduction in the variance with the importance-sampling estima-
tor, as the number of samples needed to accurately estimate the
RCU bound for a given confidence level grows as Na < /1,
rather than the typical growth N5 o rcu,; ! in standard Monte
Carlo [10, Sec. 4.1], which would be exponential behaviour
in the code length n in our setting of a memoryless channel.

Our result (34) is valid under the assumption that
pep,(X,Y) is a strongly non-lattice random variable with
a continuous and differentiable density, and that the terms
foep(x,y, X) and freu(X,Y) have an integrable characteris-
tic function under the joint densities (5). Both assumptions are
plausible for the transmission of complex-valued modulations
over continuous-output channels considered in this work.

The two remaining subsections are respectively devoted to
deriving the bias k1 ,, and variance ks ,, terms, and to proving
the asymptotic expansion (34).

A. Asymptotic Expansion: Bias

In this subsection, we carry out the asymptotic expansion of
the RCU bound estimator (29) up to the term with the factor
k1, in (34) in order to characterize the bias of the estimator.

We start by computing the statistical mean E[réu, n, n,)
of the estimator of the RCU bound (29). For
importance-sampling purposes, pairs of channel input
and output samples (x;,y,;) are generated according to (27).
For the analysis, however, it is more convenient to use
the relationship between untilted and tilted probability
densities (11) to compute the statistical mean E[réu, n, n,)
according to the joint probability density

Q"(x)W"(y|).

Defining the random variable Z = (X, Y") with density pz(z)
in (35), the statistical mean E[r¢u, n, n,] is given by

Elréu,,n,.x) = E[min{1, (M — 1)pep,, v, (2)}].

(35)

(36)

This quantity does not depend on N» and depends on Nj
through the pairwise error probability estimator pép,, ..
We next expand (36) in a series of inverse powers of Nj.
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Making use of the observation that for a random variable
D and a uniform random variable U in [0, 1], it holds that

E[min{1, D}] = Pr[D > U], (37)

we may thus rewrite (36) after taking logarithms in both sides
of the inequality inside the probability as
E[réu, v, N, =Pr[log(M — 1)+logpép,, x,(Z)>logU].
(38)
We continue our analysis by focusing on pép,, y, for the
optimum tilting parameter 7,,(z) in (23). Defining
1
€= ——
VN1

and using (8), it follows that the importance-sampling estima-
tor (22) converges as € — 0 to

(39)

pépn,Nl(z) L} pepn(‘z)(l + EJPBD(Z)@NJﬂ (40)

Ni—o0

2

where the sample estimation variance o,

(z) is given by
E [e’in,?n (z)f‘f'n(z)@,b(z,f) fpep(za Y)}

E[fpep(zv)(ﬂ2
and the random variable © y, has a conditional density func-
tion pe,, |z(f|z) that converges uniformly to the standard
normal density. The convergence is described by the degree-r
Edgeworth expansion [15, Ch. XVI1.2]

Tpep(2) =

-1, D

Poy,1z(0]z) =pe(6) - <1 + Z 2Py (0, Z)) +o(e"72).

k=3
(42)

In (42), Px(0, z) are degree-k polynomials in ¢ that depend
on the moments of the summation terms in pép,, y,(2) and
on the Hermite polynomials [15, Ch. XVI.1] in 6. These
moments are assumed to exist, or equivalently, we assume
that the summation terms in pép,, y,(2) have an integrable
characteristic function under the distribution Q™(Z).

Taking logarithms in both sides of (40) and doing a
Taylor expansion of order 2 in powers of €, we find that
log pép,, y,(2) converges in probability to

log pép,,, v, (2) - logpep,,(2) + En(e, 2, On,)

Ni—o0

(43)
since the logarithm is a continuous function, and where

1
En(e, 2,0) = €opep(2)0 — 5620§ep(z)92 +0().  (44)

Since the r.h.s. of (38) is a bounded and continuous function
of pép,, n,(z), the Mann-Wald continuity theorem [15, p. 431]
allows us to substitute (43) into (38). Grouping the summands
inside the probability, it proves convenient to define the
random variable A4,(Z,U), sometimes written simply as A,
for the sake of compactness, as

An(Za U) = log(M - 1) + log pepn(z) - 1Og U. (45)

With this definition, we find that the statistical mean of the
RCU bound estimator converges in probability to

E[réumNth] ﬁ} Pr [An(Zv U) + En(ev Za @Nl) > O]
(46)

The random variables A,, and =,, have a joint density

pa,(a)pz,)a,(§la) = pz(z)pu(u)pey, z(0]2).  (47)

Suppose that p4, (a) is a continuous differentiable density.
Under mild assumptions on the joint density of A, and =,
given in (47), the asymptotic expansion as =,, vanishes to
zero [19, Th. 1] implies that the r.h.s. of (46) satisfies

1, _ .
57, (OE[E2 A, = 0] + O(=3).

First, notice that using (37) in the first term of the r.h.s. of (48)
directly yields the RCU bound in (1), i.e.

Pr[4, + E, > 0] = Pr[4,, > 0] + pa, (0)E[E,|A, = 0]
(43)

Pr[A4, > 0] =1 — P4, (0) = rcuy, (49)

where Py, (a) denotes the cumulative distribution of A,,.
We conclude that, as ¢ — 0 or equivalently N; — oo, the RCU
bound estimator becomes asymptotically unbiased.
The properties of the Hermite polynomials [15, Ch. XVI.1]
imply that
(o)
/ po(0)0Ps (6, 2)d0 = 0. (50)
— 00
Hence, using (50) and the fact that pg(6) is the density of
the standard normal random variable, it follows that under the
conditional density expansion (42) for » = 3 the remaining
expectations in the r.h.s. of (48) are asymptotically given by

E[E,A,=0] = —%e%n +0(e%) (51)
and
E[Z2|4, = 0] = €y, + O(e%), (52)
where we defined
M =E[02,(Z)|An = 0]. (53)
Noting that O(Z3) = O(€®) we obtain as € — 0 that
El[réun, N, n) Nl+oo> rcu,(1 — ky n€?), (54)
where the parameter k; ,, is given by
0)—p'y (0
Fip = %nnpA;(_)PAf?(;)( ) (55)

It remains to characterize asymptotically, as n — oo,
the quantities p’y (0), pa,(0), Pa,(0), and 7,. For memo-
ryless channels, the variable A,, behaves asymptotically as the
sum of n independent random variables. Standard asymptotic
results in the approximation of the density of a strongly
non-lattice random variable A,, [20, Ch. 2.2] show that as
n — oo

lim 2420 _

56
n—oo ﬁAn (a) ( )

where pa,(a) is the saddlepoint approximation to the density
of A,, at a. The saddlepoint §,, is the unique solution to

$, = argmin @, (s) — sa,
0<s<1

(57)
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where ¢, (s) is the cumulant generating function of A,; the
random variable log U in (45) limits the region of convergence
of pp,(s) to the [0, 1] interval. A similar analysis can be carried
out to show that the upper tail probability and the derivative
of the density respectively satisfy

1-P
lim 17"‘@ =1, (58)
A T 0
and
/
lim P (59)

n—oo =8y pa,(a)

for the same saddlepoint s, in (57). Noting the relationship
in (49) between the random variable A,, and rcu,, and using the
asymptotic equivalence in (33), large-deviation theory results
imply that

lim 2208 4 (60)
w5 Xals)
and therefore
lim 2% — 1. (61)
n—oo pn

We recall that p,, is the optimal tilting parameter used in the
importance-sampling estimator of the RCU bound. Combining
the limits (56), (58) and (59), it follows that

. 1 pa,(0)—ply (0)
lim — -
n—00 pn(l - pn) 1- PAn(O)
Since 0 < p, < 1 and n,, > 0, by combining (62) and (55)

we conclude that &y ,, is a non-negative term. For memoryless
channels, the optimal tilting parameter satisfies p,, = O(1)

[18, Ch. 5.6]. Therefore, together with (62), we have that

P4,(0) — Py, (0)
1— Pa,(0)

= 1. (62)

=0(1). (63)
In the last part of this subsection, we study the asymptotics
of 7, as n — oo. This quantity is a conditional expectation
of the sample estimation variance o2, (z) given in (41).
Noting that E[ fep(2, X)] = pep,,(2), we start by studying
the asymptotics of pep,,(z), whose square appears in the
denominator of Jgep(z). Refined asymptotic results in the
approximation of the tail probability of a sum of strongly
non-lattice random variables [20, Eq. (2.2.6)] show that

Fon, 2 (2)+0(1) (64)

—€

uniformly in z, where &, 7,(2) is the cumulant generating
function (18) evaluated at the optimal tilting parameter (23).
The asymptotics of E| fpep(z,f)]2 are thus obtained by
squaring (64), namely

<12 1 o9 (s
E[fpep(z, X)]" = 562 no#n (2)+0(1) 65)

For the remaining terms in o?,,(z), we note that the

numerator is a tilted tail probability that can be written as

Qn(Z)GK"**" (z)+ﬁﬂ'v—%7z (z)’ (66)
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where ),,(z) is a quantity given by

Qn(z) = Prly(z,X) > 0] (67)
and computed under the tilted conditional density
Px|z(T|z) = Q"(@)e THHED om0 (68)

Let 3,(t, z) be the cumulant generating function of £,,(z, X)
under the density (68). After some manipulations, we obtain

that 5,,(t, z) is related to K, -(2) as
ﬁn(tv Z) = Hn,tf‘ﬁ,b(z) - Kn,f‘ﬁ”(z) (69)

Finding the refined asymptotics for the upper-tail probability
Q,(z) given by (67) involves computing the unique minimizer

tAn(z) = argmin f,(t, 2) (70)
>0

in the region of convergence of [(3,(t,z), given by [0,00).

From (69) and (23), it is given by
tn(z) = 27,(2).

Therefore, as n — co, we obtain using [20, Eq. (2.2.6)] that

(71)

L k(@) (2)HO(1)
vn

Combining (72) with (66), we obtain that the numerator of the
pairwise error probability sample variance satisfies

A - _ 1
E [GK"’” (z)f‘r"(z)en(z’x)fpep(z’ X)]

Q(z) = (72)

_ L s @t00)

N
(73)

Using the asymptotic equalities (73) and (65) into (41),
we obtain that o, (z) = O(y/n) uniformly in z. Since 7, is
the conditional expectation of o2, (z) given by (53), we find

pep
that

= 0(vn).

Equations (63) and (74) used in the definition of the term
k1, in (55), together with (54), imply that for sufficiently
large code length n and number of samples Ny, the expected
value of réu,, n, N, satisfies

(74)

k1,
E[réu, n, N, —2— rcun(l _ "), (75)

N1—>OO Nl
where k; ,, is a parameter that grows with n as O(y/n). This
proves the asymptotic expansion (34) as N1 — oo of the RCU
bound estimator (29) up to the term with the factor &y .

B. Asymptotic Expansion: Variance

In this subsection, we extend the asymptotic expansion of
the RCU bound estimator (29) to the term with the factor ks ,,
in (34) to characterize the variance of the estimator.

To start with, we note that the Lindeberg condition for
the central-limit theorem [15, p. 262] is satisfied and that
réu, N, N, 1S given by a sum of N independent terms.
Therefore, in an analogous manner to (8), we have

Tren ®>, (76)

No—o0

VN2

~ P ~
¢, Ny Ny ——— E[r¢un v, ) (1 +

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.



FONT-SEGURA et al.: IMPORTANCE SAMPLING FOR CODED-MODULATION ERROR PROBABILITY ESTIMATION 295

where now from (16) we have
9 B E [6X7z(ﬁn)_/3ngn(Z)ffcu(z)}
rcu 2

E [frcu(Z)}

As in the previous subsection, we have chosen the optimum
tilting parameter p,, in (32).

We are interested in characterizing the asymptotics of (77)
as n — oo. We first focus on the numerator in the r.h.s. of (77).
Using (31) and that min[l, D]?> = min[l, D?] for D > 0,
the numerator can be rewritten as

— 1.

g

(77)

W, eXn (Pr)Txn (=pn) (78)
where U, is a quantity given by
U, = E[min{1, (M — 1)*pép,, n,(Z)*}] (79)
computed under the tilted density
pz(z) = pz(z)efﬁngn(Z)*xn(*m). (80)

Mimicking the steps followed to derive (46), we use the
identity E[min{1, D}] = Pr[D > U] in (37), take logarithms
on both sides of the inequality inside the probability, and
substitute the expansion (43) in inverse powers of Nj for
log pép,, n, to show that W,, converges in probability as

U, 2 Pr[Ba(Z,U) + En(e, Z,05,) 2 0], (81)
where € is given in (39), B, is related to A,, in (45) as
B.(Z,U)=2A,Z,U) +1logU (82)

and =, is given by (44). The tail probability in (81) is
computed under the joint density

pz(z)pu(u)pe , 1z(0]2), (83)

where pe | z(0]z) has the Edgeworth expansion (42).
Using the asymptotic expansion from [19, Th. 1], as we did
in our analysis of (48), and using again the properties of the
Hermite polynomials [15, Ch. XVI.1] in an analogous manner
to the steps leading to (51) and (52), we find that as ¢ — 0

U, —+— Pr[B, > 0] + O(¢®). (84)

We next turn our attention to the denominator in the r.h.s.
of (77), which we identify as E[réu, n, n,]°. Taking squares
in the expansion in (75) we find that the squared value of

E[réu,, n, n,] converges in probability as N7 — oo to rcu? as
E[réu, n, n)° Nl+oo> rcu? + O(e?). (85)

Using (84), (85), and (78) in the formula for o2, in (77),
we obtain the asymptotic expansion

Trew N b2 + O(€%), (86)
where kg ,, is given by
k2 n = 7131‘ [Bn Z 0] GX?L(/;7L)+X"L(*/37L) — 1. (87)

s

rcu?

In our next step, we study the asymptotics of k2 ,, in (87) as
n — oo. We start by studying rcu,, whose square appears in
the equation. Refined asymptotic results in the approximation

of the tail probability of a sum of strongly non-lattice random
variables for non-singular memoryless channels [11, Th. 1]
show that the RCU bound (1) satisfies as n — oo

)= % bn IOgnJrO(l)7 (88)

_ L xaton
rcu, = \/ﬁe

where x,,(p) and p,, are respectively given by (26) and (32).
Roughly speaking, equation (88) can be obtained by plugging
the refined asymptotics of the pairwise error probability given
by (64) into the definition of A, in (45), computing the
cumulant generating function of A,, using the definitions
in (25) and (26), and employing [20, Eq. (2.2.6)] for the
tail probability rcu, = Pr[A4,, > 0]. The additional term in
the exponent of (88) is the contribution of the ﬁ prefactor
in (64). The asymptotics of rcu? are obtained by squaring (88),
namely

1 LN A
I'Clli — _eQXn(Pn) pnlog n+O(1).
n

(89)
For the asymptotics of the tail probability Pr[Bn > 0},
we exploit the identity (82) to obtain a similar expansion
to (88). To this end, let &, (\) denote the cumulant generating
function of B,,, computed under the joint density (83), and let
L, be the corresponding region of convergence. Also, let An
denote the optimizer of the cumulant generating function,

(90)

An = arg min En(N).
AEL,

The equivalent to (88) for the tail probability Pr[B,, > 0]
involves plugging the refined asymptotics of the pairwise error
probability given by (64) into the definitions of A, and B,
in (45) and (82) respectively, and computing the cumulant
generating function of B,, under the joint density (83). As a
result, we obtain that

§n(A) = Xn(2X = pn) — xn(=pn) — Alogn + O(1).
Similarly to (89), the logn term in (91) is the contribution of

the ﬁ prefactor of (64). Using (32), it follows that

oD

An = ﬁn"‘o(l)v (92)

where p, is the optimal tilting parameter used in the
importance-sampling estimator of the RCU bound. Using (91)
and (92) in [20, Eq. (2.2.6)], we find that

1 5, ) — —pn)—pD M
Pr [Bn > 0] = %e)(n(l)n) Xn (—pn)—pnlog H‘O(l). (93)

Finally, substituting (93) back in (87) the resulting expres-
sion together with (89), and simplifying the formula, we find
that ko, grows with n as O(y/n). Combining this asymptotics
with (86) and (75) into (76), we obtain (34).

V. CoDED BPSK MODULATION

A case of interest is the binary phase-shift keying (BPSK)
modulation with symbol set X = {—+/P, ++v/P}, where P is
a positive number describing an average power constraint. We
study the achievable error probability of coded BPSK modula-
tion over both the additive white Gaussian noise (AWGN) and
the i.i.d. Rayleigh fading channels. Both cases are examples

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.



296

of continuous-output channels with continuous and differential
conditional probability densities for which the required con-
ditions on fpep(,y, X) and freu(X,Y) for the theorem in
Sec. IV are satisfied.

A. AWGN Channel

A codeword x is sent over the AWGN channel

y=x+w, 94)

where w is an i.i.d. real-valued zero-mean Gaussian noise with
variance o2, and we assume perfect synchronization and a

coherent receiver. From (94), it follows that

1 _ wi—y)?

x) = 202 95)
W yle) };[1 vV 27r02

where x; and y; now denote the ith symbol of  and y, respec-
tively. Thanks to the symmetry of BPSK, the input distribution
Q"(x) that optimizes both the exponential decay (33) and the
channel capacity Cy, is the uniform distribution
n 1
Q@) = 5
For coding rates R}, < C},, where C}, is the channel capac-
ity [18, Eq. (2.2.8)], the RCU bound (1) decays exponentially
fast since x,,(pn) < 0 for 0 < p, <1 [18, Eq. (5.6.27)]. For

fixed P and o2, the coded average_Eb /Ny ratio is defined as

FEy P 1
No o2 2Ry ©7)
Monte-Carlo evaluation of the RCU bound to the error
probability (1) would involve generating triplets (x,y, )
according to the joint distribution Q™(x)W"(y|x)Q"(T), and
declaring a decoding error occurs if the codeword  has a
higher decoding metric than x, i.e., if W"(y[z) > W"(y|x).
With importance sampling, we need the distributions
P'(%|y) and W' (y|x). For a given pair of 2 and y, the cumu-
lant generating function k., (x,vy) is given from (18) as

(96)

m(y;=VP)? r(m+f)2
R, w y Z 10g ( 202 —+ e 202 )
+53 Z )’~nlog2.  (98)

Hence, the conditional distribution P”(Z|y) for the estimation
of the pairwise error probability is given from (19) by the
following product distribution

Pr@ly) = —05 ©9)
I =1

where 11, -(y) is a normalizing factor.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 1, JANUARY 2020

.107
7 0
6
= 5
&
3 4
z
) 3
£
2
- 2
1
0 1 2 3 4
. 1077
rcum Np,No
Fig. 1.  Empirical probability density of réu, n,, N, over the AWGN

channel, for code length n = 128, code rate Ry, = 0.5, and E},/No = 4 dB.

Upon substituting (96) and (95) into (26), the error exponent
Xn(p) is given by (100), at the bottom of the page. As a result,
the tilted distribution in (27) involves Q"(z), the distribution

in (96), and the tilted conditional distribution W (y|x)
1 n (yi—x4)2 _ (w—VP)? it VP)2\P
W"(y|sc) H e 20%pe7 . (¢ 2o 4 e 2(4pe? |
Mp i=1
(101)

with normalizing factor .

Importance sampling for coded BPSK in AWGN chan-
nels involves generating codewords with equiprobable BPSK
symbols, and generating channel outputs according to the
equivalent channel transition probability W/ (y|z). Even
though (101) is not a standard probability distribution, samples
can be efficiently generated using the rejection method [21,
Ch. I1.3]. For a given channel output y, the pairwise error
probability is estimated by drawing n BPSK symbols from
the binary product distribution (99).

We now proceed to consider several numerical examples.
We first fix the code length to n = 128, the rate R, = 0.5
bits per channel use and the coded Ey, /Ny = 4 dB, and show
in Fig. 1 a smoothed-kernel density estimation [22] of the
importance sampler réu,, n,,n, for several sampling sizes Ny
and No. We do not consider the Monte Carlo estimation, since
it would require at least Ny ~ 109 samples. As we increase
both N7 and Ns, the both the estimation bias and variance are
reduced, in accordance with (34).

To validate the growth of the bias and variance terms of (34)
as n increases, we obtain empirical estimates of k1 ,, and kg j,.
For every value of n, we set No = 1000, run Algorithm 1 for
several values of Ny, and find the best interpolated value of
k1, in accordance to (34) neglecting the ks ,, term. For &y ,,

Xn(p) = nplog(M — 1) — g log(2mo?) — n(1 4 p)log2 + nlog/ <e 2(1+p) 2

(y—vP)?

_wvB2\1TP
+e 2(1+p>o2> dy (100)

— 00
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Fig. 2. Empirical bias ki1, and variance k2, terms versus n over the
AWGN channel, for code rate R, = 0.5. Dashed lines represent the /n
interpolation.
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Fig. 3. Error probability versus Ey,/Ng over the AWGN channel, for code

length n = 128, code rate Ry, = 0.5, and N1 = N2 = 500 samples.

we run the algorithm at N; = 1000 and N3 = 1 several times,
compute the sample variance and normalized it according
to (34). Fig. 2, plotting k; ,, and k2, against the codeword
length n for a rate Ry, = 0.5 bits per channel use at several
coded Ey, /Ny ratios, confirms that both terms grow as /n.
In the remainder in this subsection, we take N; = Ny =
500. As we detailed in Sec. II, the error probability of the
optimal code is, at most, the RCU bound. Similarly, using
sphere-packing arguments, Shannon established that every
code transmitted over the AWGN channel is lower bounded by
[1, Eq. (15)]. Therefore, the error probability of good binary
codes must lie between the RCU bound and the Shannon lower
bound. This region is shaded in gray in the following figures.
In Fig. 3, we depict the coded error probability region with
high performance codes [23] for code length n = 128, and
rate R}, = 0.5, versus the Ey, /Ny ratio. We include examples
of LTE codes (turbo code with 8 states), 5G codes (NR BG 2),
polar codes (CRC-7 and L = 32), LDPC codes ([F256 and OSD
t = 4), BCH codes (extended OSD ¢ = 4) and TBCC codes
(m = 14). For such a small code length, TBCC codes exhibit
good performance, even though there must exist codes with a

100

< By _ N
S N D1 - == réun Ny N, (29)

- _ —— Shannon [1]

Al
10-8
0 200 400 600 800 1,000
n
Fig. 4. Error probability versus n over the AWGN channel, for code rate
Ry, = 0.5, N1 = N2 = 500 samples, and several values of Ey,/No.

performance, at most, the RCU bound. Similar conclusions can
be obtained from Fig. 4, plotting the coded error probability
versus the block length n for varying Ey,/Ng.

B. Rayleigh Channel
A second case of interest is the i.i.d. Rayleigh fading

channel. For a transmitted codeword @ = (x1,...,2,) €
{—V/P,+\/P}" the received sequence y = (y1,...,y,) is
Yi = hywi +w;, (102)

where w = (wy,...,w,) is an iid real-valued zero-mean

Gaussian noise w1th variance o2, and h = (hy,...,h,) is
i.i.d. Rayleigh distributed with densny
n
= [ 2hie ™1 {h; > 0}. (103)
i=1

Since E[h?] = 1, the coded average F}, /Ny ratio remains (97).

Assuming perfect channel state information at the receiver
(CSIR), the RCU bound to the error probability, averaged over
the i.i.d. Rayleigh fading, is given by the expression

rew, — / PR @)W (y|z, h).

'min{l, (M — 1)pep,,(z,y, h)} dedydh, (104)

where Q"(x) and p"(h) are respectively given by (96)
and (103), the channel conditional probability density function

W™(y|x, h) is now given by
iz, h) H o~ i (105)
y x, 207 .
TV 27r02

In (104), the pairwise error probability for a fixed transmitted
codeword «, received sequence y and fading realization h,
denoted as pep,,(x,y, h), reads

Z/Q”(f)ﬂ{%(%y,h,f) >0}dz (106)

for the log-likelihood ratio function

pep,(x,y, h

lp(x,y, h,T) = log (107)

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.



298

The importance-sampling estimator of the RCU bound to
the error probability (104) is analogous to the case without
fading and involves generating the quadruplet (z,y,T, h)
according to the exponentially-tilted joint distribution

P (h)Q" (@)W} (y|z, h) L (Z|y, h),

with the conditional distribution P"(Z|y, h) for the pairwise
error probability given by the product distribution

(108)

n

_ryi—hiT)* 1)
e e

Pl (x|y,h) = (109)
pin, (Y, b
where 1, -(y, h) is the corresponding normalizing factor, and

W (yle, h) is the tilted channel conditional distribution

(%*’h’w)

H e 20+p)o?

pzl

_ (wi—hivVP)? _ ithi VP2 NP
e 2(14p)o2 2(1+p)a2 (110)

with 11, the corresponding normalizing factor. Observe that
the fading realization h is generated according to the original
Rayleigh distribution (103) as, similarly to the case without
fading, the exponential tilting of the outer expectation of the
RCU (104) only affects the conditional distribution of the
received sequence y, while leaving the remaining distributions
unaltered. The tilting parameters 7 and p needed in (109)
and (110) are optimally selected as the minimizers

W (ylx, h)

+e

To(x,y, h) = argmin k,, , (@, y, h) (111)
7>0

and

Pn = argmian(p)v (112)

0<p<1

where the cumulant generating functions &, -(z,y,h) and
Xn(p) are respectively given as

T(yi—hiVP)? T (y;+hi VP)?
R, 1 w XN Zlog( : 202 +e ‘ 202 )
n
+ﬁ (yi — hiz;)?—nlog2 (113)
i=1

and by (114), at the bottom of the page. The nested
importance-sampling estimator for the i.i.d. Rayleigh fading
channel is summarized in pseudo-code in Algorithm 2 on the
top of the page, where by extension we defined

gn(®,y, h) =log(M — 1) + k, 1 (@,y,h). (115

Similarly to the AWGN case, we include an error probability
lower bound, the improved sphere-packing bound [24, Th. 3.1]
valid for discrete-input continuous-output symmetric channels
such as the i.i.d. Rayleigh fading channel described in (102).
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Algorithm 2 Importance-Sampling Estimate of the RCU
Bound for BPSK Modulation Over the i.i.d. Rayleigh
Fading Channel
Input: Q"(x), W"(y|z),
Output: rcu
calculate M = |27 |;
calculate x,,(p) from (114);
select p «— argming<,<1 xn(p);
find W' (y|x, h) from (110);
a«—0;
for : = 1;7 < Ny do
generate (x;,y,, h;) according to
P (R)Q" ()W (], h);
compute K, (€, y;, ;) from (113);
select 7 «— argmin,>o kn (i, Y;);
find P"(z|y, h) from (109);
70
for j =1;7 < Njdo
generate T; according to P™(Z|y;, h;);
v —
v+
end
pép — - enn (@i,y;,h i)
o — o+ —e ~pgal@i,, i) min{1, (M
end
réu — a - eXn(P);
return réu;

p™(h), n, Ry, N2 and Ny

aoe T @y h EDLL, (4, y,, i, T5) > 0

— 1)pép};

100

- - - - réu,, Ny, N, (29)
—— Wiechman [24]
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Fig. 5. Error probability versus Ey, /Ng over the i.i.d. Rayleigh channel, for
code rate Ry, = 0.5, N1 = N2 = 500 samples, and several code lengths n.

We take Ny = Ny = 500 to estimate the RCU
bound (104) using the importance-sampling Algorithm 2.
In Fig. 5, we depict the coded error probability region against
the coded Ey, /Ny for rate R, = 0.5, several codeword

Xn(p) = np 1og(M—1)—g log(270?) —n(1 + p)log2 + nlog/ / 2he ™’ <e 2(14p) a2
0

(y—hVP)? (y+hvVP)?

+ e 20+p)o?

+p
> dydh  (114)

—00
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Fig. 6. Error probability versus E},/Ng over the i.i.d. Rayleigh channel, for
code length n = 1024, N1 = N2 = 500 samples, and several code rates Ry,.

lengths n. For n = 128, we obtain that RCU bound with
i.i.d. Rayleigh fading incurs a 3 dB loss in Ey, /Ny compared
to the AWGN channel in Fig. 3. We also observe that the gap
to the error probability lower bound is higher in the presence
of i.i.d. Rayleigh fading. By setting n = 1024, we finally show
in Fig. 2 the coded error probability region against the coded
Ey, /Ny for several rates above below channel capacity.

VI. CONCLUSION

In this paper, we have presented an importance-sampling
technique to estimate the achievable error probability, using
random coding arguments, for the transmission of coded data
over a continuous-output channel. Exploiting the exponential
decay of the error probability, we found closed-form expres-
sions for the optimal tilted distributions needed to generate
the samples of the two nested estimators involved. We studied
the convergence in probability of the estimator and illustrated
the transmission of the coded BPSK modulation over the
AWGN and i.i.d. Rayleigh fading channels. Our study gives an
estimate of the bias and variance of the estimator in terms of
the number of samples and the code length, thereby providing
guidance on the dimensioning of the nested estimators.

REFERENCES

[1] C. E. Shannon, “Probability of error for optimal codes in a
Gaussian channel,” Bell Syst. Tech. J., vol. 38, no. 3, pp. 611-656,
1959.

[2] K. Shanmugam and P. Balaban, “A modified Monte-Carlo simulation

technique for the evaluation of error rate in digital communication

systems,” [EEE Trans. Commun., vol. 28, no. 11, pp. 1916-1924,

Nov. 1980.

B. Davis, “An improved importance sampling method for digital com-

munication system simulations,” IEEE Trans. Commun., vol. COM-34,

no. 7, pp. 715-719, Jul. 1986.

[4] D. Lu and K. Yao, “Improved importance sampling technique for
efficient simulation of digital communication systems,” [EEE J. Sel.
Areas Commun., vol. SAC-6, no. 1, pp. 67-75, Jan. 1988.

[5]1 R.J. Wolfe, C. Jeruchim, and P. Hahn, “On optimum and suboptimum
biasing procedures for importance sampling in communication simula-
tion,” IEEE Trans. Commun., vol. 38, no. 5, pp. 639-647, May 1990.

[6] J.-C. Chen, D. Lu, J. S. Sadowsky, and K. Yao, “On importance
sampling in digital communications. I. Fundamentals,” IEEE J. Sel.
Areas Commun., vol. 11, no. 3, pp. 289-299, Apr. 1993.

[3

=

[7]1 E. Cavus, C. L. Haymes, and B. Daneshrad, “Low BER performance
estimation of LDPC codes via application of importance sampling to
trapping sets,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1886-1888,
Jul. 2009.

[8] S.-K. Ahn, K. Yang, and D. Har, “Evaluation of the low error-rate
performance of LDPC codes over Rayleigh fading channels using impor-
tance sampling,” IEEE Trans. Commun., vol. 61, no. 6, pp. 2166-2177,
Jun. 2013.

[91 Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the

finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,

pp. 2307-2359, May 2010.

J. Bucklew, Introduction to Rare Event Simulation. New York, NY, USA:

Springer-Verlag, 2013.

Y. Altug and A. B. Wagner, “Refinement of the random coding bound,”

IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6005-6023, Oct. 2014.

J. Scarlett, A. Martinez, and A. G. I. Fabregas, “Mismatched decoding:

Error exponents, second-order rates and saddlepoint approximations,”

IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2647-2666, May 2014.

J. Honda, “Exact asymptotics for the random coding error probability,”

in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015, pp. 91-95.

J. Font-Segura, G. Vazquez-Vilar, A. Martinez, A. G. 1. Fabregas, and

A. Lancho, “Saddlepoint approximations of lower and upper bounds to

the error probability in channel coding,” in Proc. 52nd Conf. Inf. Sci.

Sys. (CISS), Princeton, NJ, USA, Mar. 2018, pp. 1-6.

W. Feller, An Introduction to Probability Theory and Its Applications,

vol. 2. New York, NY, USA: Wiley, 1971.

R. Durrett, Probability: Theory and Examples. Belmont, CA, USA:

Duxbury, 1996.

A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-

tions. Berlin, Germany: Springer, 2009.

R. G. Gallager, Information Theory and Reliable Communication. Hobo-

ken, NJ, USA: Wiley, 1968.

D. R. Cox and N. Reid, “Approximations to noncentral distributions,”

Can. J. Statist., vol. 15, no. 2, pp. 105-114, Jun. 1987.

J. L. Jensen, Saddlepoint Approximations. New York, NY, USA: Oxford

Univ. Press, 1995.

L. Devroye, Non-Uniform Random Variate Generation. New York, NY,

USA: Springer-Verlag, 1986.

V. A. Epanechnikov, “Non-parametric estimation of a multivariate prob-

ability density,” Theory Probab. Appl., vol. 14, no. 1, pp. 153-158, 1969.

M. C. Coskun et al., “Efficient error-correcting codes in the short

blocklength regime,” Phys. Commun., vol. 34, pp. 66-79, Jun. 2019.

G. Wiechman and I. Sason, “An improved sphere-packing bound for

finite-length codes over symmetric memoryless channels,” IEEE Trans.

Inf. Theory, vol. 54, no. 5, pp. 1962-1990, May 2008.

[10]
(1]

[12]

[13]

[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

Josep Font-Segura (S’07-M’14) was born in
Barcelona, Spain, in 1984. He received the Ph.D.
degree in electrical engineering from the Universitat
Politecnica de Catalunya, Barcelona, in 2014.
From 2008 to 2009, he was a Research Assis-
tant with the Information Signal Processing Group,
Columbia University, New York. Since 2014, he has
been a Research Associate with the Information The-
ory and Coding Group, Universitat Pompeu Fabra,
Barcelona. His research interests are in the areas
of information theory, digital communications, and

signal processing.

Dr. Font-Segura was a member of the organizing committee of the IEEE
International Symposium on Information Theory in 2016. He was a recipient
of the “la Caixa” Savings Bank Fellowship for graduate studies in the United
States, the Best Paper Award from the IEEE International Conference on
Communications, and the Juan de la Cierva Postdoctoral Fellowship from the
Spanish Government. He is currently the Vice-Chair of the Spanish chapter
of the IEEE Information Theory Society. He also contributed as a reviewer
in several journal and conference publications of the IEEE and the EURASIP
societies.

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.



300

Alfonso Martinez (SM’11) was born in Zaragoza,
Spain, in October 1973. He received the Telecom-
munications Engineering degree from the University
of Zaragoza in 1997.

From 1998 to 2003, he was a Systems Engineer
with the Research Centre of the European Space
Agency (ESA-ESTEC), Noordwijk, The Nether-
lands. His work on APSK modulation was instru-
mental in the definition of the physical layer of
DVB-S2. From 2003 to 2007, he was a Research
and Teaching Assistant with Technische Univer-
siteit Eindhoven, The Netherlands, where he conducted research on digital
signal processing for MIMO optical systems and on optical communica-
tion theory. From 2008 to 2010, he was a Postdoctoral Fellow with the
Information-theoretic Learning Group, Centrum Wiskunde & Informatica
(CWI), Amsterdam, The Netherlands. In 2011, he was a Research Asso-
ciate with the Signal Processing and Communications Lab, Department of
Engineering, University of Cambridge, Cambridge, U.K. From 2012 to 2016,
he was a Ramon y Cajal Research Fellow at Universitat Pompeu Fabra (UPF),
Barcelona, Spain, where he was also an Adjunct Associate Professor from
2017 to 2019. In this period, his research focused on mismatched decoding
theory and on the analysis of finite-length communication systems by means
of saddlepoint approximations. He is currently a Serra Hunter Associate
Professor with UPF, Barcelona. His research interests lie in the fields of
information theory and coding, with emphasis on digital modulation and the
analysis of mismatched decoding; in this area he has coauthored a monograph
on Bit-Interleaved Coded Modulation. He is also a Serra Hunter Fellow.
More generally, he is intrigued by the connections between information
theory, optical communications, and physics, particularly by the links between
classical and quantum information theory.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 1, JANUARY 2020

Albert Guillén i Fabregas (S’01-M’05-SM’09)
received the Telecommunication Engineering degree
from the Universitat Politecnica de Catalunya,
the Electronics Engineering degree from the Politec-
nico di Torino, Torino, Italy, in 1999, and the Ph.D.
degree in communication systems from the Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lau-
sanne, Switzerland, in 2004.

Since 2011, he has been an ICREA Research
Professor at Universitat Pompeu Fabra. He is also
an Adjunct Researcher with the University of Cam-
bridge. He has held appointments at the New Jersey Institute of Technology,
Telecom Italia, European Space Agency (ESA), Institut Eurécom, University
of South Australia, University of Cambridge, as well as visiting appointments
at EPFL, Ecole cole Nationale des Télécommunications (Paris), Universitat
Pompeu Fabra, University of South Australia, Centrum Wiskunde & Infor-
matica, and Texas A&M University in Qatar. His research interests are in the
areas of information theory, coding theory, and communication theory.

Dr. Guillén i Fabregas is a member of the Young Academy of Europe.
He received both Starting and Consolidator Grants from the European
Research Council, the Young Authors Award of the 2004 European Signal
Processing Conference (EUSIPCO), the 2004 Nokia Best Doctoral Thesis
Award from the Spanish Institution of Telecommunications Engineers, and
the Predoctoral Research Fellowship of the Spanish Ministry of Education
to join ESA. He was the General Co-Chair of the 2016 IEEE International
Symposium on Information Theory. He was an Editor of IEEE TRANS-
ACTIONS ON WIRELESS COMMUNICATIONS, an Associate Editor of IEEE
TRANSACTIONS ON INFORMATION THEORY, and an Editor of Foundations
and Trends in Communications and Information Theory.

Authorized licensed use limited to: UNIVERSITAT POMPEU FABRA. Downloaded on September 15,2020 at 11:46:56 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


