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Outage Probability of the Gaussian MIMO
Free-Space Optical Channel with PPM
Nick Letzepis, Member, IEEE, and Albert Guillén i Fàbregas, Senior Member, IEEE

Abstract�—Atmospheric effects can signicantly degrade the
reliability of free-space optical communications. One such effect
is scintillation, caused by atmospheric turbulence, refers to
random uctuations in the irradiance and phase of the received
laser beam. In this paper we investigate the use of multiple
lasers and multiple apertures to mitigate scintillation. Since the
scintillation process is slow, we adopt a block fading channel
model and study the outage probability under the assumptions of
orthogonal pulse-position modulation and non-ideal photodetec-
tion. Assuming perfect receiver channel state information (CSI),
we derive the signal-to-noise ratio (SNR) exponents for the cases
when the scintillation is lognormal, exponential and gamma-
gamma distributed, which cover a wide range of atmospheric
turbulence conditions. Furthermore, when CSI is also available
at the transmitter, we illustrate very large gains in SNR are
possible (in some cases larger than 15 dB) by adapting the
transmitted power. Under a long-term power constraint, we
outline fundamental design criteria via a simple expression that
relates the required number of lasers and apertures for a given
code rate and number of codeword blocks to completely remove
system outages.

Index Terms�—Optical communication, MIMO systems, scin-
tillation, outage probability, information theory.

I. INTRODUCTION

FREE-space optical (FSO) communication offers an at-
tractive alternative to the radio frequency (RF) channel

for the purpose of transmitting data at very high rates. By
utilising a high carrier frequency in the optical range, digital
communication on the order of gigabits per second is possible.
In addition, FSO links are difcult to intercept, immune to
interference or jamming from external sources, and are not
subject to frequency spectrum regulations. FSO communica-
tions have received recent attention in applications such as
satellite communications, bre-backup, RF-wireless back-haul
and last-mile connectivity [1].

The main drawback of the FSO channel is the detrimental
effect the atmosphere has on a propagating laser beam. The
atmosphere is composed of gas molecules, water vapour, pol-
lutants, dust, and other chemical particulates that are trapped
by Earth�’s gravitational eld. Since the wavelength of a
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typical optical carrier is comparable to these molecule and
particle sizes, the carrier wave is subject to various propagation
effects that are uncommon to RF systems. One such effect is
scintillation, caused by atmospheric turbulence, and refers to
random uctuations in the irradiance of the received optical
laser beam (analogous to fading in RF systems) [2]�–[4].

Recent works on the mitigation of scintillation concentrate
on the use of multiple-lasers and multiple-apertures to create
a multiple-input-multiple-output (MIMO) channel [5]�–[14].
Many of these works consider scintillation as an ergodic
fading process, and analyse the channel in terms of its ergodic
capacity. However, compared to typical data rates, scintillation
is a slow time-varying process (with a coherence time on the
order of milliseconds), and it is therefore more appropriate
to analyse the outage probability of the channel. To some
extent, this has been done in the works of [6], [11], [13]�–[15].
In [6], [14] the outage probability of the MIMO FSO channel
is analysed under the assumption of ideal photodetection (i.e.
a Poisson counting process) with no bandwidth constraints.
Wilson et al. [11] also assume perfect photodetection, but with
the further constraint of pulse-position modulation (PPM). Lee
and Chan [13], study the outage probability under the as-
sumption of on-off keying (OOK) transmission and non-ideal
photodetection, i.e. the combined shot noise and thermal noise
process is modelled as zero mean signal independent additive
white Gaussian noise (AWGN). Farid and Hranilovic [15]
extend this analysis to include the effects of pointing errors.

In this paper we study the outage probability of the
MIMO FSO channel under the assumptions of PPM, non-
ideal photodetection, and equal gain combining (EGC) at the
receiver. In particular, we model the channel as a quasi-static
block fading channel whereby communication takes place
over a nite number of blocks and each block of transmitted
symbols experiences an independent identically distributed
(i.i.d.) fading realisation [16], [17]. We consider two types of
CSI knowledge. First we assume perfect CSI is available only
at the receiver (CSIR case), and the transmitter knows only
the channel statistics. Then we consider the case when perfect
CSI is also known at the transmitter (CSIT case).1 Under this
framework we study a number of scintillation distributions:
lognormal, modelling weak turbulence; exponential, modelling
strong turbulence; and gamma-gamma [18], which models a
wide range of turbulence conditions. For the CSIR case, we
derive signal-to-noise ratio (SNR) exponents, which describe
the asymptotic slope of the outage probability as a function
of SNR when on a log-log scale. We show that the SNR

1Given the slow time-varying scintillation process, CSI can be estimated
at the receiver and fed back to the transmitter via a dedicated feedback link.
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Fig. 1. Block diagram of an ! ×" MIMO FSO system.

exponents are the product of: a channel related parameter,
dependent on the scintillation distribution; the number of
lasers times the number of apertures, reecting the spatial
diversity; and the Singleton bound [19]�–[21], reecting the
block diversity. For the CSIT case, the transmitter nds the
optimal power allocation that minimises the outage probability
[22]. Using results from [23], we derive the optimal power
allocation subject to short- and long-term power constraints.
We show that very large power savings are possible compared
to the CSIR case. Interestingly, under a long-term power
constraint, we show that delay-limited capacity [24] is zero for
exponential and (in some cases) gamma-gamma scintillation,
unless one codes over multiple blocks, and/or uses multiple
lasers and apertures.

The paper is organised as follows. In Section II, we
dene the channel model and assumptions. In Section III
we review the lognormal, exponential and gamma-gamma
models. Section IV denes the outage probability and presents
results on the minimum-mean squared error (MMSE). Then
in Sections V and VI we present the main results of our
asymptotic outage probability analysis for the CSIR and CSIT
cases, respectively. Concluding remarks are then given in
Section VII. Proofs of the various results can be found in
the Appendices.

II. SYSTEM MODEL

We consider an ! × " MIMO FSO system with !
transmit lasers an " aperture receiver as shown in Fig. 1.
Information data is rst encoded by a binary code of rate #!.
The encoded stream is modulated according to a $-ary PPM
scheme, resulting in rate # = #! log2 $ (bits/channel use).
Repetition transmission is employed such that the same PPM
signal is transmitted in perfect synchronism by each of the !
lasers through an atmospheric turbulent channel and collected
by " receive apertures. We assume the distance between the
individual lasers and apertures is sufcient so that spatial
correlation is negligible. At each aperture, the received optical
signal is converted to an electrical signal via photodetection.
Non-ideal photodetection is assumed such that the combined
shot noise and thermal noise processes can be modelled as zero
mean, signal independent AWGN (an assumption commonly
used in the literature, see e.g. [3]�–[5], [13], [15], [25]�–[30]).

In FSO communications, channel variations are typically
much slower than the signalling period. As such, we model
the channel as a non-ergodic block-fading channel, for which a

given codeword of length %& undergoes only a nite number
% of scintillation realisations [16], [17]. The received signal
at aperture ', ' = 1, . . . , " can be written as

!"
# [ℓ] =

(
$∑

%=1

ℎ̃%,"
#

)
√

,̃# "#[ℓ] + #̃"
# [ℓ], (1)

for - = 1, . . . , %, ℓ = 1, . . . , &, where !"
# [ℓ], #̃

"
# [ℓ] ∈ ℝ' are

the received and noise signals at block -, time instant ℓ and
aperture ', "#[ℓ],∈ ℝ' is the transmitted signal at block -
and time instant ℓ, and ℎ̃%,"

# denotes the scintillation fading
coefcient between laser . and aperture '. Each transmitted
symbol is drawn from a PPM alphabet, "#[ℓ] ∈ # ppm Δ=
{$1, . . . , $'}, where $( is the canonical basis vector, i.e., it
has all zeros except for a one in position /, the time slot
where the pulse is transmitted. The noise samples of #̃"

# [ℓ] are
independent realisations of a random variable 0 ∼ ' (0, 1),
and ,̃# denotes the received electrical power of block - at each
aperture in the absence of scintillation. The fading coefcients
ℎ̃%,"
# are independent realisations of a random variable 1̃ with

probability density function (pdf) 2)̃(ℎ).
At the receiver, we assume equal gain combining

(EGC) [31] is employed, such that the entire system is
equivalent to a single-input single-output (SISO) channel, i.e.

!#[ℓ] =
1√
"

*∑

"=1

!"
# [ℓ] =

√
,#ℎ#"#[ℓ] + ##[ℓ], (2)

where ##[ℓ] = 1√
*

∑*
"=1 #̃

"
# [ℓ] ∼ ' (0, 1), and ℎ#, a realisa-

tion of the random variable 1 , is dened as the normalised
combined fading coefcient, i.e.

ℎ# =
3

!"

$∑

%=1

*∑

"=1

ℎ̃%,"
# , (3)

where 3 = 1/("[1̃]
√
1 + 52

+/(!")) is a constant to ensure
"[12] = 1 and 52

+ is the scintillation index (SI), dened as [4]

52
+ ≜ Var(1̃)

("[1̃ ])2
. (4)

Thus, the total instantaneous received electrical power at block
- is ,# = !2",̃#/32, and the total average received SNR is
snr ≜ "[ℎ2

#,#] = "[,#].2
When perfect CSI is known only at the receiver (CSIR case),

we assume the electrical power is distributed uniformly over
the blocks, i.e., ,# = , = snr for - = 1, . . . , %. When perfect
CSI is known at both the transmitter and receiver (CSIT
case), we will allocate electrical power in order to improve
performance. In particular, we will consider the following two

2For optical channels with ideal photodetection, the normalisation "[#] =
1 is commonly used to keep optical power constant. We assume non-ideal
photodetection and work entirely in the electrical domain. Hence, we chose the
normalisation "[#2] = 1, used commonly in RF fading channels. However,
since we consider only the asymptotic behaviour of the outage probability,
the specic normalisation is irrelevant and does not affect our results.
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electrical power constraints

Short-term:
1
%

,∑

#=1

,# ≤ 6 (5)

Long-term: "
[
1
%

,∑

#=1

,#

]
≤ 6. (6)

Note that in practical systems, channel estimation errors,
latency, noise and fading on the feedback link would need to
be addressed. To simplify our analysis we neglect these issues.
By assuming a perfect feedback link, our analysis serves as a
performance benchmark for practical systems.

Throughout the paper, we will devote special attention to
the case of % = 1, i.e., the channel does not vary within a
codeword. This scenario is relevant for FSO, since, due to the
large data-rates, one is able to transmit millions of bits over
the same channel realisation. We will see that most results
admit very simple forms, and some cases, even closed form.
This analysis allows for a system characterisation where the
expressions highlight the roles of the key design parameters.

III. SCINTILLATION DISTRIBUTIONS

The distribution of the irradiance uctuations is dependent
on the strength of the optical turbulence. Under weak tur-
bulence conditions, the uctuations are generally considered
to be lognormal distributed, and for very strong turbulence,
exponential distributed [2], [32]. For moderate turbulence, the
distribution of the uctuations is not well understood, and
a number of distributions have been proposed, such as the
lognormal-Rice distribution [4], [18], [33]�–[35] (also known
as the Beckmann distribution [36]) and K-distribution [33].
In [18], Al-Habash et al. proposed a gamma-gamma dis-
tribution as a general model for all levels of atmospheric
turbulence. Moreover, recent work in [35] has shown that the
gamma-gamma model is in close agreement with experimen-
tal measurements under moderate-to-strong turbulence condi-
tions. In this paper we focus on lognormal, exponential, and
gamma-gamma distributed scintillation, which are described
as follows.

For lognormal distributed scintillation,

2LN
)̃

(ℎ) =
1

ℎ5
√
27

exp
(
−(log ℎ− 8)2/(252)

)
, (7)

where 8 and 5 are related to the SI via 8 = − log(1 + 52
+ )

and 52 = log(1 + 52
+ ), where we have assumed "[1̃2] = 1.

For exponential distributed scintillation, 52
+ = 1, and

2Exp

)̃
(ℎ) = 9 exp(−9ℎ), (8)

which corresponds to the super-saturated turbulence regime.
The gamma-gamma distribution arises from the product of

two independent Gamma distributed random variables and has
the pdf [18],

2GG
)̃

(ℎ) =
2(:;)

!+"
2

Γ(:)Γ(;)
ℎ

!+"
2 −1K-−.(2

√
:;ℎ), (9)

where K/(<) denotes the modied Bessel function of the
second kind [37, Ch. 10]. The parameters : and ; are related
with the scintillation index via 52

+ = :−1 + ;−1 + (:;)−1.

IV. INFORMATION THEORETIC PRELIMINARIES

The channel described by (2) under the quasi-static assump-
tion is not information stable [38] and therefore, the channel
capacity in the strict Shannon sense is zero. Moreover, the
codeword error probability of any coding scheme is lower
bounded by the information outage probability [16], [17],

6out(snr, #) = Pr(=(%,&) < #), (10)

where # is the transmission rate and =(%,&) is the instan-
taneous input-output mutual information for a given power
allocation % ≜ (,1, . . . , ,,), and vector channel realisation
& ≜ (ℎ1, . . . , ℎ,). The instantaneous mutual information can
be expressed as [39]

=(%,&) =
1
%

,∑

#=1

=awgn(,#ℎ2
#), (11)

where =awgn(?) is the input-output mutual information of an
AWGN channel with SNR ?. For PPM [25]

=awgn(?) =

log2 $− "
[
log2

(
1 +

'∑

(=2

@−0+
√
0(1#−11)

)]
, (12)

where 0( ∼ ' (0, 1) for / = 1, . . . , $.
For the CSIT case we will use the recently discovered

relationship between mutual information and the MMSE [40].
This relationship states that3

A

A?
=awgn(?) =

mmse(?)
log(2)

, (13)

where mmse(?) is the MMSE in estimating the input from the
output of a Gaussian channel as a function of the SNR ?. For
PPM, we have the following result

Theorem 4.1: The MMSE for PPM on the AWGN channel
with SNR ? is

mmse(?) = 1− "

⎡

⎢⎣
@2

√
0(

√
0+11) + ($− 1)@2

√
012

(
@0+

√
011 +

∑'
2=2 @

√
01$

)2

⎤

⎥⎦ , (14)

where 03 ∼ ' (0, 1) for B = 1, . . . , $.
Proof: See Appendix A.

Note that both (12) and (14) can be evaluated using standard
Monte-Carlo methods.

V. OUTAGE PROBABILITY ANALYSIS WITH CSIR

For the CSIR case, we employ uniform power allocation,
i.e. ,1 = . . . = ,, = snr. For codewords transmitted over
% blocks, obtaining a closed form analytic expression for
the outage probability is intractable. Even for % = 1, in
some cases, for example the lognormal and gamma-gamma
distributions, determining the exact distribution of 1 can be a
difcult task. Instead, as we shall see, obtaining the asymptotic
behaviour of the outage probability is substantially simpler.
Towards this end, and following the footsteps of [21], [41],
we derive the SNR exponent.

3The log(2) term arises because we have dened $awgn(%) in bits/channel
usage.
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Theorem 5.1: The outage SNR exponents for a MIMO FSO
communications system modelled by (2) are given as follows:

ALN(log snr)2 =
!"

8 log(1 + 52
+ )

(1 + ⌊% (1−#!)⌋) (15)

AExp
(log snr) =

!"

2
(1 + ⌊% (1−#!)⌋) (16)

AGG
(log snr) =

!"

2
min(:, ;) (1 + ⌊% (1−#!)⌋) , (17)

for lognormal, exponential, and gamma-gamma cases respec-
tively, where #! = #/ log2($) is the binary code rate and

A(log snr)$
Δ= − lim

snr→∞

log6out(snr, #)
(log snr)2

C = 1, 2. (18)

Proof: See Appendix B.
Proposition 5.1: The outage SNR exponents given in The-

orem 5.1, are achievable by random coding over PPM con-
stellations whenever % (1−#!) is not an integer.

Proof: The proof follows from the proof of Theorem 5.1
and the proof of [21, Th. 1].

The above proposition implies that the outage exponents
given in Theorem 5.1 are the optimal SNR exponents over
the channel, i.e. the outage probability is a lower bound to
the error probability of any coding scheme, its corresponding
exponents (given in Theorem 5.1) are an upper bound to the
exponent of coding schemes. From Proposition 5.1, we can
achieve the outage exponents with a particular coding scheme
(random coding, in this case), and therefore, the exponents in
Theorem 5.1 are optimal.

From (15)-(17) we immediately see the benets of spatial
and block diversity on the system. In particular, each exponent
is proportional to: the number of lasers times the number of
apertures, reecting the spatial diversity; a channel related
parameter that is dependent on the scintillation distribution;
and the Singleton bound, which is the optimal rate-diversity
tradeoff for Rayleigh-faded block fading channels [19]�–[21].

Comparing the channel related parameters in (15)-(17) the
effects of the scintillation distribution on the outage probability
are directly visible. For the lognormal case, the channel related
parameter is 8 log(1 + 52

+ ) and hence is directly linked to the
SI. Moreover, for small 52

+ < 1, 8 log(1 + 52
+ ) ≈ 852

+ and
the SNR exponent is inversely proportional to the SI. For the
exponential case, the channel related parameter is a constant
1/2 as expected, since the SI is constant. For the gamma-
gamma case the channel related parameter is min(:, ;)/2,
which highlights an interesting connection between the out-
age probability and recent results in the theory of optical
scintillation. For gamma-gamma distributed scintillation, the
fading coefcient results from the product of two independent
random variables, i.e. 1̃ = DE , where D and E model
uctuations due to large scale and small scale cells. Large
scale cells cause refractive effects that mainly distort the
wave front of the propagating beam, and tend to steer the
beam in a slightly different direction (i.e. beam wander).
Small scale cells cause scattering by diffraction and therefore
distort the amplitude of the wave through beam spreading
and irradiance uctuations [4, p. 160]. The parameters :, ;
are related to the large and small scale uctuation variances
via : = 5−2

4 and ; = 5−2
5 . For a plane wave (neglecting

TABLE I
MINIMUM SIGNAL-TO-NOISE RATIO snrawgn

! (IN DECIBELS) FOR
RELIABLE COMMUNICATION FOR TARGET RATE & = &" log2 '.

' &" = 1
4 &" = 1

2 &" = 3
4

2 −0.7992 3.1821 6.4109
4 0.2169 4.0598 7.0773
8 1.1579 4.8382 7.7222
16 1.9881 5.5401 8.3107

inner/outer scale effects) 52
5 > 52

4 , and as the strength of
the optical turbulence increases, the small scale uctuations
dominate and 52

5 → 1 [4, p. 336]. This implies that the
SNR exponent is exclusively dependent on the small scale
uctuations. Moreover, under strong turbulence conditions,
52
5 → 1, the gamma-gamma distribution reduces to a K-

distribution [4, p. 368], and the system has the same SNR
exponent as the exponential case typically used to model
scintillation in very strong turbulence conditions.

In comparing the lognormal exponent with the other cases,
we observe a striking difference. For the lognormal case (15)
implies the outage probability is dominated by a (log(snr))2
term, whereas for exponential and gamma-gamma scintillation
it is dominated by a log(snr) term. Thus the outage probability
decays much more rapidly with SNR for the lognormal case
than it does for the exponential or gamma-gamma cases.
Furthermore, for the lognormal case, the slope of the outage
probability curve, when plotted on a log-log scale, will not
converge to a constant value. In fact, a constant slope curve
will only be observed when plotting the outage probability on
a log-(log)2 scale. As we shall see in the next section, this
asymptotic behaviour means that when perfect CSI is also
known at the transmitter, the optimal power control scheme
(subject to long-term power constraints) is able to completely
remove system outages, even for a single laser and aperture
system with single block transmission.

In deriving (15) (see Appendix B-A) we do not rely on
the lognormal approximation4, which has been used on a
number occasions in the analysis of FSO MIMO channels,
e.g. [5], [13], [30]. Under this approximation, 1 is lognormal
distributed (7) with parameters 8 = − log(1+52

+/(!")) and
52 = −8, and we obtain the approximated exponent

A(log snr)2 ≈ 1

8 log(1 + 62
%

$* )
(1 + ⌊% (1−#!)⌋) . (19)

Comparing (15) and (19) we see that although the lognormal
approximation also exhibits a (log(snr))2 term, it has a differ-
ent slope than the true SNR exponent. The difference is due
to the approximated and true pdfs having different behaviours
in the limit as ℎ → 0. However, for very small 52

+ < 1, using
log(1 + <) ≈ < (for < < 1) in (15) and (19) we see that they
are approximately equal.

For the special case of single block transmission, % = 1, it
is straightforward to express the outage probability in terms of
the cumulative distribution function (cdf) of the scintillation

4This refers to approximating the distribution of the sum of lognormal
distributed random variables as lognormal [42]�–[45].
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Fig. 2. Outage probability curves for the CSIR (left) and CSIT (right) cases with )2
# = 1, * = 1, ' = 2, &" = 1/2, snrawgn

1/2 = 3.18 dB: lognormal
(solid); exponential (dashed); and, gamma-gamma distributed scintillation (dot-dashed), , = 2, - = 3.

random variable, i.e.

6out(snr, #) = G)

(√
snrawgn

7

snr

)
, (20)

where G)(ℎ) denotes the cdf of 1 , and snrawgn
7

Δ=
=awgn,−1(#) denotes the SNR value at which the mutual
information is equal to #. Table I reports these values for
$ = 2, 4, 8, 16 and # = #! log2 $, with #! = 1

4 ,
1
2 ,

3
4 .

Therefore, for % = 1, we can compute the outage probability
analytically when the distribution of 1 is available, i.e., in
the exponential case for !," ≥ 1 or in the lognormal and
gamma-gamma cases for !," = 1. In the case of exponential
scintillation we have that

6out(snr, #) = Γ̄

(
!",

(
!"(1 +!")

snrawgn
7

snr

) 1
2

)
,

(21)
where Γ̄(H, <) ≜ 1

Γ(8)

∫ 9
0 I8−1 exp(−I) AI denotes the regu-

larised (lower) incomplete gamma function [37, p.260]. For
the lognormal and gamma-gamma scintillation with !" > 1,
we must resort to numerical methods. This involved applying
the fast Fourier transform (FFT) to 2)̃ to numerically compute
its characteristic function, taking it to the !" th power, and
then applying the inverse FFT to obtain 2) . This method
yields very accurate numerical computations of the outage
probability in only a few seconds.

Outage probability curves for the % = 1 case are shown
on the left in Fig. 2. For the lognormal case, we see that the
curves do not have constant slope for large SNR, while, for
the exponential and gamma-gamma cases, a constant slope is
clearly visible. We also see the benets of MIMO, particularly
in the exponential and gamma-gamma cases, where the SNR
exponent has increased from 1/2 and 1 to 2 and 4 respectively.

VI. OUTAGE PROBABILITY ANALYSIS WITH CSIT

In this section we consider the case where the transmitter
and receiver both have perfect CSI knowledge. In this case,
the transmitter determines the optimal power allocation that

minimises the outage probability for a xed rate, subject
to a power constraint [22]. The results of this section are
based on the application of results from [23] to PPM and the
scintillation distributions of interest. Using these results we
uncover new insight as to how key design parameters inuence
the performance of the system. Moreover, we show that large
power savings are possible compared to the CSIR case.

For the short-term power constraint given by (5), the optimal
power allocation is given by mercury-waterlling at each
channel realisation [23], [46],

,# =
1
ℎ2
#

mmse−1

(
min
{

$− 1
$

,
J

ℎ2
#

})
, (22)

for - = 1, . . . , % where mmse−1(K) is the inverse-MMSE
function and J is chosen to satisfy the power constraint.5

From [23, Prop. 1] it is apparent that the SNR exponent for
the CSIT case under short-term power constraints is the same
as the CSIR case.

For the long-term power constraint given by (6) the optimal
power allocation is [23]

% =

{
℘,

∑,
#=1 ℘# ≤ M

0, otherwise,
(23)

where

℘# =
1
ℎ2
#

mmse−1

(
min
{

$− 1
$

,
1

Jℎ2
#

})
, - = 1, . . . , %

(24)
and M is a threshold such that M = ∞ if
lim:→∞ "ℛ(:)

[
1
,

∑,
#=1 ℘#

]
≤ 6 , and

ℛ(M) ≜
{
& ∈ ℝ,

+ :
1
%

,∑

#=1

℘# ≤ M

}
, (25)

5Note that in [23], [46], the minimum in (22) is between 1 and %
ℎ2
&
. For

'PPM, mmse(0) = '−1
' (see (14)). Hence we must replace 1 with '−1

' .
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otherwise, M is chosen such that 6 = "ℛ(:)

[
1
,

∑,
#=1 ℘#

]
.

In (24), J is now chosen to satisfy the rate constraint

1
%

,∑

#=1

=awgn

(
mmse−1

(
min
{

$− 1
$

,
1

Jℎ2
#

}))
= #.

(26)
From [23], the long-term SNR exponent is given by

Alt(log snr) =

⎧
⎨

⎩

;st
(log snr)

1−;st
(log snr)

Ast(log snr) < 1

∞ Ast(log snr) > 1,
(27)

where Ast(log snr) is the short-term SNR exponent, i.e., the SNR
exponents (15)-(17). Note that Alt(log snr) = ∞ implies the
outage probability curve is vertical, i.e. the power allocation
scheme (23) is able to maintain constant instantaneous mutual
information (11). Thus for a given SNR, we dene the
maximum rate at which constant mutual information can be
maintained as the delay-limited capacity [24].

From (27) and (15)-(17), we therefore have the following
corollary.

Corollary 6.1: The delay-limited capacity of the channel
described by (2) with CSIT subject to long-term power con-
straint (6) is zero whenever

!" ≤
{
2 (1 + ⌊% (1−#!)⌋)−1 exponential

2
min(-,.) (1 + ⌊% (1− #!)⌋)−1 gamma-gamma.

(28)
For lognormal scintillation, delay-limited capacity is always
nonzero.
Corollary 6.1 outlines fundamental design criteria for nonzero
delay-limited capacity in FSO communications. Single block
transmission (% = 1) is of particular importance given
the slow time-varying nature of scintillation. From (28), to
obtain nonzero delay-limited capacity with % = 1, one
requires !" > 2 and !" > 2/min(:, ;) for exponential
and gamma-gamma cases respectively. Note that typically,
:, ; ≥ 1. Thus a 3 × 1, 1 × 3 or 2 × 2 MIMO system
is sufcient, even under worst case turbulence conditions
(exponential scintillation).

In addition, for the special case % = 1, the solution (24)
can be determined explicitly since

J =
(
ℎ2mmse(=awgn,−1(#))

)−1 =
(
ℎ2mmse(snrawgn

7 )
)−1

.
(29)

Therefore,

℘opt =
snrawgn

7

ℎ2
. (30)

Intuitively, (30) implies that for single block transmission,
whenever snrawgn

7 /ℎ2 ≤ M, one simply transmits at the
minimum power necessary so that the received instantaneous
SNR is equal to the SNR threshold (snrawgn

7 ) of the code.
Otherwise, transmission is turned off. Thus an outage occurs

whenever ℎ <
√

snrawgn
'
: and hence

6out(snr, #) = G)

(√
snrawgn

7

N−1(snr)

)
, (31)

where N−1(snr) is the solution to N(M) = snr where,

N(M) ≜ snrawgn
7

∫ ∞

/

2)(ℎ)
ℎ2

Aℎ, (32)

and O ≜
√

snrawgn
'
: . Moreover, the snr at which 6out(#, snr) →

0 is precisely lim:→∞ N(M). In other words, the minimum
long-term average SNR required to maintain a constant mutual
information of # bits per channel use, denoted by snr, is

snr awgn
7 = snrawgn

7

∫ ∞

0

2)(ℎ)
ℎ2

Aℎ = snrawgn
7 "[1−2], (33)

Hence, recalling that snrawgn
7 = =awgn,−1(#), the delay-

limited capacity (under the constraint of PPM) is6

P;(snr) = =awgn

(
snr

"[1−2]

)
. (34)

Thus, when the expectation "[1−2] exists, a plot of the delay-
limited capacity versus snr (in dB) will have the same shape
as the mutual information of the non-fading PPM AWGN
channel, only shifted to the right by −10 log10 "[1−2] dB.

In the cases where the distribution of 1 is known in
closed form, (32) can be solved explicitly, hence yielding
the exact expressions for outage probability (31) and delay-
limited capacity (34). For lognormal distributed scintillation
with % = ! = " = 1, we have that

Nln(M) =
1
2
snrawgn

7 (1 + 52
+ )

4

erfc

(
3 log(1 + 52

+ ) +
1
2 log snr

awgn
7 − 1

2 log M
√
2 log(1 + 52

+ )

)
,

(35)

and

PLN
; (snr) = =awgn

(
snr

(1 + 52
+ )4

)
, (36)

where we have explicitly solved the integrals in (32) and (34)
respectively.

For the exponential case with % = 1, we obtain,

Nexp(M) = snrawgn
7

!"(1 +!")
(!" − 1)(!" − 2)

Γ̄

(
!" − 2,

√
!"(1 +!")

snrawgn
7

M

)
, (37)

and

PExp
; (snr) =

{
=awgn

(
($*−1)($*−2)

$*(1+$*) snr
)

!" > 2

0 otherwise.
(38)

For the gamma-gamma case with % = ! = " = 1, NGG(M)
can be expressed in terms of hypergeometric functions, which
are omitted for space reasons. The delay-limited capacity,
however, reduces to a simpler expression7

PGG
; (snr) =

{
=awgn

(
(-−2)(-−1)(.−2)(.−1)

(-.)(-+1)(.+1) snr
)

:, ; > 2

0 otherwise.
(39)

Fig. 2 (right) compares the outage probability for the % = 1
CSIT case (with long-term power constraints) for each of

6Note that a similar expression was derived in [24].
7Note that since we assume the normalisation "[#2] = 1, then

∫∞
0

(((ℎ)
ℎ2 .ℎ = 1

"2

∫∞
0

(GG
(̃

())

)2 .0, where 1 = 1/
√

1 + )2
# and 2GG

*̃
(ℎ)

is dened as in (9) such that "[#̃] = 1.

Authorized licensed use limited to: University of South Australia. Downloaded on June 09,2010 at 02:14:43 UTC from IEEE Xplore.  Restrictions apply. 



3688 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 12, DECEMBER 2009

TABLE II
COMPARISON OF CSIR AND CSIT CASES WITH * = 1, & = 1/2, ' = 2
)2
# = 1, , = 2, - = 3. BOTH snr∗ AND snr ARE MEASURED IN DECIBELS.

lognormal exponential gamma-gamma
!" snr∗ snr snr∗ snr snr∗ snr

1 40.1 15.2 106.2 (56.2) 65.6 (24.5)
2 29.2 9.9 57.9 (17.8) 40.7 12.2
3 24.4 7.9 42.0 11.0 31.7 9.0
4 21.5 6.9 34.1 8.4 26.9 7.5

the scintillation distributions. For !" = 1 we see that the
outage curve is vertical only for the lognormal case, since
P; = 0 for the exponential and gamma-gamma cases. In these
cases one must code over multiple blocks for P; > 0, i.e.
from Corollary 6.1, % ≥ 6 and % ≥ 4 for the exponential
and gamma-gamma cases respectively (with #! = 1/2).
Comparing the CSIR and CSIT cases in Fig. 2 we can see that
very large power savings are possible when CSI is known at
the transmitter. These savings are further illustrated in Table II,
which compares the SNR required to achieve 6out < 10−5

(denoted by snr∗) for the CSIR case, and the long-term average
SNR required for 6out → 0 in the CSIT case (denoted by snr,
which is given by (33)). Note that in the CSIT case, the values
of snr given in the parentheses�’ is the minimum SNR required
to achieve 6out < 10−5, since P; = 0 for these cases (i.e.
snr = ∞). From Table II we see that the power saving is at
least around 15 dB, and in some cases as high as 50 dB. We
also see the combined benets of MIMO and power control,
e.g. at !" = 4, the system is only 3.7 dB (lognormal) to 5.2
dB (exponential) from the capacity of nonfading PPM channel
(snrawgn

1/2 = 3.18 dB).

VII. CONCLUSION

In this paper we have analysed the outage probability of the
MIMO Gaussian FSO channel under the assumption of PPM
and non-ideal photodetection, for lognormal, exponential and
gamma-gamma distributed scintillation. When CSI is known
only at the receiver, we have shown that the SNR exponent
is proportional to the number lasers and apertures, times
a channel related parameter (dependent on the scintillation
distribution), times the Singleton bound, even in the cases
where a closed form expression of the equivalent SISO
channel distribution is not available in closed-form. When the
scintillation is lognormal distributed, we have shown that the
outage probability is dominated by a (log(snr))2 term, whereas
for the exponential and gamma-gamma cases it is dominated
by a log(snr) term. When CSI is also known at the transmitter,
we applied the power control techniques of [23] to show that
very signicant power savings are possible. We showed that
for single block transmission, with optimal power allocation
(subject to long-term power constraints), !" = 3 is sufcient
to completely remove system outages, even in the worst-case
scintillation (exponential).

APPENDIX A
PROOF OF THEOREM 4.1

Suppose PPM symbols are transmitted over an AWGN
channel, the non-fading equivalent of (2). The received noisy

symbols are given by ! = √
?" + #, where " ∈ # ppm (we

have dropped the time index ℓ for brevity of notation).
Using Bayes�’ rule [47], the MMSE estimate is

"̂ = " ["∣!] =
'∑

(=1

$( exp(
√
?Q()

∑'
2=1 exp(

√
?Q2)

. (40)

From (40) the Bth element of "̂ is

<̂3 =
exp(√?Q3)

∑'
2=1 exp(

√
?Q2)

. (41)

Using the orthogonality principle [48] mmse(?) =
"
[
∥"− "̂∥2

]
= "[∥"∥2] − E[∥"̂∥2]. Since ∥$(∥2 = 1 for

all / = 1, . . . , $, then "[∥"∥2] = 1. Due to the symmetry
of $PPM we need only consider the case when " = $1 was
transmitted. Hence,

mmse(?) = 1−
(
"[<̂2

1] + ($− 1)"[<̂2
2]
)
. (42)

Now Q1 = √
? + R1 and Q3 = R3 for B = 2, . . . , $, where

R( is a realisation of a random variable 0( ∼ ' (0, 1) for
/ = 1, . . . , $. Hence, substituting these values in (41) and
taking the expectation (42) yields the result given the theorem.

APPENDIX B
PROOF OF THEOREM 5.1

We begin by dening a normalised (with respect to SNR)
fading coefcient, S%,"

# = − 2 log ℎ̃),+
&

log snr , which has a pdf

2>),+
&

(S) =
log snr
2

@−
1
2 > log snr 2)̃

(
@−

1
2 > log snr

)
. (43)

The instantaneous SNR for block - is given by

?# = snrℎ2
# =

(
3

!"

$∑

%=1

*∑

"=1

snr
1
2 (1−>),+

& )
)2

, (44)

for - = 1, . . . , %. Therefore,

lim
snr→∞

=awgn(?#) =

{
0 if all S%,"

# > 1
log2 $ at least one S%,"

# < 1

= log2 $ (1− 11{(# ≻ 1}) ,

where (#
Δ= (S1,1# , . . . , S$,*

# ), 11{⋅} denotes the indicator

function, 1
Δ= (1, . . . , 1) is a 1 × !" vector of 1�’s, and

the notation ) ≻ * for vectors ), * ∈ ℝ2 means that H3 > -3
for B = 1, . . . , C.

From the denition of outage probability (10), we have

6out(snr, #) = Pr(=!(snr) < #) =
∫

'
2(()A(, (45)

where (
Δ= ((1, . . . , (,) is a 1×%!" vector of normalised

fading coefcients, 2(() denotes their joint pdf, and

6 =

{
( ∈ ℝ,$* :

,∑

#=1

11{(# ≻ 1} > % (1−#!)

}
(46)

is the asymptotic outage set. We now compute the asymptotic
behaviour of the outage probability, i.e.

− lim
snr→∞

log6out(snr, #) = − lim
snr→∞

log
∫

'
2(()A(. (47)
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A. Lognormal case

From (7) and (43) we obtain the joint pdf,

2(() .= exp

(
− (log snr)2

852

,∑

#=1

$∑

%=1

*∑

"=1

(S%,"
# )2

)
, (48)

where we have ignored terms of order less than (log snr)2 in
the exponent and constant terms independent of ( in front
of the exponential. Combining (47), (48), and using Varad-
han�’s lemma [49],

− lim
snr→∞

log6out(snr, #)

=
(log snr)2

852
inf
'

{
,∑

#=1

$∑

%=1

*∑

"=1

(S%,"
# )2

}
.

The above inmum occurs when any T of the (# vectors are
such that (# ≻ 1 and the other % −T vectors are zero, where
T is the smallest integer satisfying (46). Hence, it follows that
T = 1+ ⌊% (1−#!)⌋ and thus,

− lim
snr→∞

log6out(snr, #)

=
(log snr)2

852
!" (1 + ⌊% (1−#!)⌋) . (49)

Dividing both sides of (49) by (log snr)2 the SNR expo-
nent (15) is obtained.

B. Exponential case

From (8) and (43) we obtain the joint pdf,

2(() .= exp

(
− log snr

!"

2

,∑

#=1

$∑

%=1

*∑

"=1

S%,"
#

)
, (50)

where we have ignored exponential terms in the exponent and
constant terms independent of ( in front of the exponential.

Following the same steps as the lognormal case i.e. the
dening the same asymptotic outage set and application of
Varadhan�’s lemma [49], the SNR exponent (16) is obtained.

C. Gamma-gamma case

Let us rst assume : > ;. From (9) and (43) we obtain the
joint pdf,

2>),+
&

(S) .= exp
(
−;

2
S log snr

)
, S > 0 (51)

for large snr, where we have used the approximation K/(<) ≈
1
2Γ(O)(

1
2<)

−/ for small < and O > 0 [37, p. 375]. The extra
condition, S > 0, is required to ensure the argument of the
Bessel function approaches zero as snr → ∞ to satisfy the
requirements of the aforementioned approximation. For the
case ; > : we need only swap : and ; in (51). Hence we
have the joint pdf

2(() .= exp

(
−min(:, ;) log snr

2

,∑

#=1

$∑

%=1

*∑

"=1

S%,"
#

)
. (52)

Following the same steps as in the lognormal and exponential
cases, with the additional constraint (# ≻ 0, the SNR
exponent (17) is obtained.
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