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Mismatched Binary Hypothesis Testing: Error
Exponent Sensitivity

Parham Boroumand

Abstract— We study the problem of mismatched binary
hypothesis testing between i.i.d. distributions. We analyze the
tradeoff between the pairwise error probability exponents when
the actual distributions generating the observation are different
from the distributions used in the likelihood ratio test, sequential
probability ratio test, and Hoeffding’s generalized likelihood ratio
test in the composite setting. When the real distributions are
within a small divergence ball of the test distributions, we find
the deviation of the worst-case error exponent of each test with
respect to the matched error exponent. In addition, we consider
the case where an adversary tampers with the observation, again
within a divergence ball of the observation type. We show that
the tests are more sensitive to distribution mismatch than to
adversarial observation tampering.

Index Terms— Hypothesis testing, mismatch, likelihood ratio
test, generalized likelihood ratio test, sequenstial probability ratio
test.

I. INTRODUCTION

YPOTHESIS testing, or the problem of deciding the

probability distribution that generated a given observa-
tion, is one of the main problems in statistics, finding applica-
tions in social, biological, medical and data sciences, including
information theory, image processing and signal processing.
Depending on the specific subject and underlying assumptions,
hypothesis testing has been termed classification, model selec-
tion, discrimination, or signal detection. The simplest instance
of this problem is the binary case, i.e., deciding which of the
two probability distributions have generated the observation.
Depending on whether or not priors on the hypotheses are
available, the problem is referred to as Bayesian or non-
Bayesian. In the Bayesian setting, the average probability of
error emerges as the key performance measure. Instead, when
priors are not available the average error probability cannot be
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computed and one must consider a tradeoff among the pairwise
error probabilities (see e.g. [1], [2]).

In [3], Neyman and Pearson studied non-Bayesian binary
case and considered the minimization of one pairwise error
probability subject to the other being upper-bounded by a
constant. In this setting, they proved that a hypothesis test that
computes the ratio between the two probability distributions
for the given observation and compares it to a threshold is
optimal. In order to implement the optimal likelihood ratio test,
one must wait to process the whole block of observation data at
once. In some applications, it may be preferable to attempt to
make a decision as promptly as possible. In [4], Wald proposed
a sequential test that attempts to make a decision at every
time instant, or waits one time instant for the arrival of a
new observation sample; the optimality of the above test was
established in [5] (see also [6] for the second order optimality).

A critical underlying assumption in the above and follow-
up works, is that the probability distributions of each of
the hypotheses are known and thus, can be employed by
testing algorithms. While highly desirable, this is an optimistic
assumption that is difficult to guarantee in practice. A number
of solutions have been proposed in the literature. Composite
hypothesis testing considers the case where the distributions
that generate the observation belong to known families of
distributions. Hoeffding proposed an asymptotically optimal
test for this setting in [7]. Classification assumes no knowledge
of the underlying probability distributions but assumes the
availability of training data (see e.g. [8]-[10]). Robust hypoth-
esis testing assumes a statistical model of the variability of the
true distribution, which is then used to design the optimal test
for that robustness model [2], [11]-[13].

The simplicity of the Neyman and Pearson’s likelihood ratio
or Wald’s sequential tests has brought them into practice, even
in settings where the distributions are unknown. In this work,
we consider an alternative to the above methods. We assume
that the true probability distributions P, and P; are unknown,
but instead, two fixed probability distributions Py and Py are
used for testing using the optimal tests for the cases where the
distributions are known. We refer to this case to as mismatched
hypothesis testing.

In this work, we study the exponential decay of the proba-
bility of error, or error exponents in short, as a proxy for the
performance of hypothesis testing. In particular, we consider
the error exponent tradeoff between both pairwise error prob-
abilities. We consider the worst case error exponent tradeoff
when the actual distributions generating the observation are
within a certain distance of the test distributions. As a measure
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of distance, we use the family of Rényi relative entropies [14]
(see also [15]) as well as f-divergences [16], [17] with f(¢)
such that its second derivative at t = 1 is bounded. We study
the behavior of the worst-case tradeoff when the distance
between the test and the true distributions is small and provide
an approximation of the worst-case exponent as an expansion
around the matched exponent, i.e., the exponent attained when
the distributions are known. In addition, we extend the results
to the case where the mismatch is not in the testing distrib-
utions but in the observation: an adversary has modified the
observation data within a certain divergence of the observation
type.

This paper is structured as follows. Section II introduces
notation and reviews the preliminaries about likelihood ratio,
Hoeffding’s generalized likelihood ratio and sequential testing.
Sections III, IV and V discuss our main results for the
likelihood ratio, generalized likelihood ratio and sequential
probability ratio tests in the mismatched setting. Section VI
discusses the case where the mismatch is not in the dis-
tribution, but in the observation, i.e., the cases where the
observation data has been tampered by an adversary. Proofs
of the main results can be found in the Appendices.

II. PRELIMINARIES

Consider the binary hypothesis testing problem [1] where
an observation © = (r1,...,x;) € X" is generated from two
possible distributions P¥ and Pf defined on the probability
simplex P(X*), for some observation alphabet X'. We assume
that P¥ and PF are product distributions, ie., Pr(z) =
Hl 1 Po(w;), and similarly for P. For simplicity, we assume
that both Py(z) > 0 and P;(x) > 0 for each z € X. In the
following, we describe the settings considered in the paper.

A. Likelihood Ratio Test

In this setting k is assumed to be a fixed integer n. Let
¢ : X" — {0,1} be a hypothesis test that decides which
distribution generated the observation x. We consider deter-
ministic tests ¢ that decide in favor of Py if « € Ay, where
Ao C X"™ is the decision region for the first hypothesis, and
decides in favor of P; otherwise. We define 4, = X™\ Ap to
be the decision region for the second hypothesis. The test
performance is determined by the pairwise error probabilities

¢) =Y P=), = > Pix). (1)
zEA; €Ay

A hypothesis test is said to be optimal whenever it achieves
the optimal error probability tradeoff given by

min € , 2
s c0(9) @
where ¢ € [0, 1].
The likelihood ratio test defined as
P (a)
¢>(w)—1{ - >em}, 3)
Py (x)

was shown in [3] to attain the optimal tradeoff (2) for every
- The type of a sequence © = (x1,...,x,) is defined as
Tw(a) = N(alm) , where N (a|x) is the number of occurrences
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of the symbol a € X in the string. The likelihood ratio test can
also be expressed as a function of the type of the observation
T, as [18]

¢(T) = 1{D(Tx|| P) —

where D(P(Q) = ¥, c. P(x)
between distributions P and Q. Thls expresswn of the likeli-
hood ratio test will be used extensively throughout the paper.

In this paper, we study the asymptotic exponential decay
of the pairwise error probabilities as the observation length n
tends to infinity, i.e.,

(T | Pr) > v} )

1 1
Ey £ liminf ——logeg(¢), Ei2liminf ——logei (). (5)
n—oo n n— 00 n

These limits are known to exist for i.i.d. observations, as is
the case of this paper. In order to study the tradeoff between
error exponents, it is sufficient to consider deterministic tests.
The optimal error exponent tradeoff (Fy, £7) is defined as

E1(Ey) £ sup {E1 € Ry : 3¢, 3N, € Zy s.t. Vn > Ny,
o(¢) < e "0 and () <e "1} (6)
By using Sanov’s Theorem [18], [19], the optimal error

exponent tradeoff (Fy, F1), attained by the likelihood ratio
test, can be shown to be [20]

Eo = min D(Q||Fy), )
Ey = min D(Q||Pr), ®)

where
Q= {Q € P(X): D(Q||P,) — D@Q|P) >~}, (9
Q1 ={Q € P(X): D(Q||P)) — D(Q|P1) <~}. (10)

The minimizing distribution in (7), (8) is the tilted distrib-
ution

P Ma

Qa(z) = E)A (l 0<A<1, (11
Yacx B (@) P (a )

whenever ~ satisfies —D(Py||P1) < v < D(Py|Pp). In this

case, A is the solution of

D(Qx||Po) — D(QA[|P1) = (12)

Instead, if v < —D(Fy||P1), the optimal distribution in (7)
is Qa(z) = Py(z) and Ey = 0, and if v > D(P1||Fp), the
optimal distribution in (8) is Qx(z) = Pi(z) and E; = 0.

Equivalently, the dual expressions of (7) and (8) can be
derived by substituting the minimizing distribution (11) into
the Lagrangian yielding [19], [20]

Ey = max)\'y log ( Z P )Pf‘(m)), (13)
zeX
By = max —)y - log(ZPO VP (x )). (14)
zeX

The Stein regime is defined as the highest error exponent
under one hypothesis when the error probability under the
other hypothesis is at most some fixed € € (0, 1) [18]

Eiﬁ) Lsup{F; € Ry :3¢,3ng € Zy s.t. Vn > ng

€0(¢) <e and e (g) <e "} (15)
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The optimal Ef), given by [18]

B\ = D(Py| P), (16)

can be achieved by setting the threshold in (4) to be v =
—D(R||Py) + ﬁ where ¢ is a constant that depends on
distributions Py, P; and e.

B. Generalized Likelihood Ratio Test

In this setting, k£ is also a fixed integer n similarly to
the likelihood ratio test case. We consider the composite
hypothesis testing problem where only the first distribution
Py is known, and no prior information is available regarding
the second distribution P;. Hoeffding proposed in [7] the
following generalized likelihood ratio test for when P is
known, while the second distribution is restricted to P(X),

_ SUPp, ep(x) Pl(z) n
o) = 1| LT 2 e |

Similarly to (4), Hoeffding’s generalized likelihood ratio test

can be expressed as a function of the type of the observation
T, as [18], [21]

¢(Tz) = {D(Te||Po) = 7}

The pairwise error probabilities are defined as exactly as in (1)
where Ay and A; are the corresponding decision regions of
Hoeffding’s test. The optimal error exponent tradeoff is defined
as in (6).

By using Sanov’s Theorem, for any 0 < v < D(P;|| Pp) the
error exponents of Hoeffding’s generalized likelihood ratio test
are given by

A7)

(18)

D(QFo) =,
D(Q|| ).

0= min (19)
Q:D(Q|Po)=~

1= min (20)
Q:D(QlPo)<~

The minimizing distribution in (20) is the tilted distribution
P _1
Py (@) P ()

K 1
Dacx o (@) P (a)
and the p is the solution to D(Q,||Py) = <. Therefore,
by comparing (11) and (21), the optimizing distributions have
the same form and there exist some thresholds for likelihood
ratio test and Hoeffding’s test such that ), = (. Hence

Hoeffding’s test can achieve the optimal error exponent trade-
off [21].

Qu(x) =

;o 0=, 21

C. Sequential Probability Ratio Test

In the sequential setting, the number of samples & is a
random variable called the stopping time 7 taking values
in Zy. A sequential hypothesis test is a pair ® = (¢ :
X7 — {0,1},7) where for every n > 0 the event {r <
n} € %, where .%, is the sigma algebra induced by random
variables X1,...,X,, ie., o(X1,...,X,,). Moreover, ¢ is a
% measurable decision rule, i.e., the decision rule determined
by causally observing the sequence X;. In other words, at each
time instant, the test attempts to make a decision in favor of
one of the hypotheses or chooses to take a new sample.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

The two possible pairwise error probabilities that measure
the performance of the test are defined as

€0(®) =Po[op(X7) #0] , e1(®) =Py [0(X7) #1], (22)

where the probabilities are over Fy, P, respectively.

There are two definitions of achievable error exponents in
the literature. According to [22] the optimal error exponent
tradeoff is defined as

Ey(Ep) = sup {E1 ERT:30, Ine€Z, st Ep[r]<n,
Ep, [7] < n, €(®) < 27"F0 and ¢, (®) < 2_”E1}.
(23)

Alternatively, the expected stopping time can be different
under each hypothesis by design to increase the reliability
under one of the hypotheses by taking a larger number of
samples compared to the number of samples the alternative
hypothesis. Accordingly, [23] defined the error exponent trade-
off as

Ey(Ey)
£ sup {El e Rt : 30, I ng,ny € Zy,s.t. Ep,[7] < ng,
Ep,[r] < n1, €o(®) < 270F0 and (@) < 2™ E }
(24)

which allows different stopping times under different hypoth-
esis.

The sequential probability ratio test (SPRT) & = (¢, 1)
was proposed by Wald in [4]. The stopping time is defined
as follows

r=inf{n>1:8, >~ or S, < -m}, (25)
where
= Po(z;)
S, = lo , 26
> log X (26)

i=1
is the the accumulated log-likelihood ratio (LLR) of the
observed sequence x and 7y, 7y are two positive real numbers.
Moreover, the test makes a decision according to the rule

. {o if S, > o7

1 if S‘r < —71;
It is shown in [24] that the above test attains the optimal error
exponent tradeoff, i.e., as thresholds ~q,y; approach infinity,
the test achieves the best error exponent trade-off in (23)
and (24). It is known that the error probabilities of sequential
probability ratio test as a function of vy and v, are [25]

co=co-e ", e=c-e (28)

as vp,y1 — oo where ¢, ¢; are positive constants. Moreover,
it can also be shown that

0[ ] D(l O(iu 1)
EPI[T] B 71)“5” 10)

(14 o(1)), (29)

(14 o(1)). (30)
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Therefore, according to definition (23), the optimal error
exponent tradeoff is given by,

Ey = D(Pi||Ry), E1= D(FRo||P1), 3D
where thresholds v, y; are chosen as
’yo:n(D(P0||P1)+O(].)), Y1 = TL(D(PlHP())'FO(].)) (32)

Hence, the sequential probability ratio test achieves the Stein
regime error exponents of the standard likelihood ratio test
simultaneously. Moreover, according to definition (24) the
optimal error exponent tradeoff is given by

Fo = (D(P|Ry), Er — %D(POHPl), (33)
where ¢ = Z—; Equivalently, we have
EoEy = D(Ry||PL)D(Py|| Py). (34)
To achieve (34), thresholds v, y; should be chosen as
Yo=no(D(Po||Pr)+o(1)), v1=n1(D(Pr]|Po)+o(1)). (35)

III. LIKELIHOOD RATIO TESTING SENSITIVITY

In this section, we study the robustness of mismatched
likelihood ratio testing. We first derive the optimal error
exponent tradeoff and find the worst-case error exponent when
the true distribution lies in a small relative entropy ball around
the testing distribution. Then, we study the deviation of the
worst case error exponent around the matched likelihood ratio
test exponent for small divergence balls, where the divergence
is either the Rényi divergence of order « or the f-divergence
with &y 2t)‘

at? =1

Let Py(x) and Py (x) be the testing distributions used in the

likelihood ratio test with threshold 4 given by

= Q.

¢(Tw) = Y{D(Tx| Po) = D(Ta|P1) = 4} (36)
For simplicity, we assume that both Py(z) > 0 and P (z) >
0 for each x € X. We are interested in the achievable error
exponent tradeoff of the mismatched likelihood ratio test,

ie.,
El(Eo) £ sup {El S R+ : 3’3/,3]\[0 S Z+ s.t. Vn > Np,

e < e "o and ¢ < e 1 }. (37)

Theorem 1: For fixed Py, P, € P(X
exponent tradeoff in (37) is given by

) the optimal error

Eo = min D(Q|Py), (38)
QEQo
Ey = min D(Q|Py), (39)
QEQ,
where
Oy ={Q e PX): DQ|B) - DQ|P) >4}, (40)
01 ={Q e P(X): D(Q||Py) — D(Q|P) <4}, (41)
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The minimizing distributions in (38) and (39) are
A Py(a) Py ™ () P (x)
Q o(x) = ) Ao > 0,
’ S e Pola) By (a) P (a)
(42)
A Py (a) P (= VB ()
@ (z) = A1 =0
’ S P B @B @)
(43)
respectively, where A\ is chosen so that
D(QxollPo) = D(Qx, |1 P1) = 4 (44)

whenever D(Py||Py) — D(Py||P) < 4, and otherwise,

Qx, () = Po(z) and Fy = 0. Similarly, A; > 0 is chosen

so that . . . R
D(Qx [[Fo) = D(@x, [|1P1) =4

whenever D(Pi||Py) — D(Pi[|Py)

(45)

> 4, and otherwise,

Qx,(z) = P(x) and E; = 0. Furthermore, the dual expres-
sions for the type-I and type-II error exponents are
By = max )y —log (3 Ro(@) Py (@) PP()). 46)
reX
E, = max — Ay —log ( Z B z)Py(x )pl_)‘(x)) (47)
TEX

Proof: Theorem 1, proved in Appendix A follows from a
direct application of Sanov’s Theorem. O

Remark 1: For mismatched likelihood ratio testing, the
optimizing distributions Q Nos Q A, can be different, since the
decision regions only depend on the mismatched distributions.
However, if PO,P1 are tilted with respect to Py and P,
then both Q )\O,Q)\l are also tilted respect to Py and P;.
This implies that for any set of mismatched distributions
150, Py that are tilted with respect to generating distributions,
there exists a threshold 4 such that the mismatched likelihood
ratio test achieves the optimal error exponent tradeoff in (6).
However, the thresholds to achieve the same type-I and type-
IT error exponents, under the matched and mismatched tests
are different, and the difference can be found by equating the
likelihood ratio test for Q A

Theorem 2: In the Stein regime, the mismatched likelihood
ratio test achieves

B9 = min DQ||Py), (48)
Qe
with threshold
. - . V(Po, Py, P1) . _
= D(Po||Py)~D(Po|| Pr)+ wQ L(e), (49)
where A( )
Ao Py(X }
V(Py, Py, P1) = Varp, | log —= , (50)
(Po, Fo, P1) Po[ gPl(X)
is the variance of the random variable log ﬁfgi where X

is distributed according to Py, and Q7 !(e) is the inverse
cumulative distribution function of a zero-mean unit-variance
Gaussian random variable.
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Proof: Theorem 2, proved in Appendix B follows from
Central Limit Theorem. O

Remark 2: Note that since P, satisfies the constraint
in (48) then E§E) < EY). In fact, if Py, P, are tilted respect
to Py, P, then this inequality is met with equality. Moreover,
it is easy to find a set of data and test distributions where
B© < BO.

Next, we study the worst-case error-exponent performance
of mismatched likelihood ratio testing when the distributions
generating the observation fulfil

Py EB(PQ,T()), P GB(Pl,’I“l), 51

where

B(Q,r) ={PeP(X):dQ,P)<r}, (52)

is a ball centred at distribution () containing all distributions
whose distance is smaller or equal than radius 7, and for the
Rényi divergence of positive order o« where a@ # 1 we set
d(Q, P) = Da(QIIP) = 2111083, e Q(2)° P(x)!~2, and
for a = 1, the continuity in « leads to defining the Rényi
divergence of order 1 to be the relative entropy. Similarly,
given a convex and twice differentiable function f, we set
d(Q.P) = Dy(QIP) = Loen P@)f (%) 1o be the

P(z)
d>f(t)
dt2

f-divergence, and we set o =

t=1" .

For every P, the achievable error exponent Ey does not
depend on P; therefore, for every rg, 71 > 0 the least favorable
exponents F(rg), E4(r1) can be written as

Eg(ro)= min  min D(Q|IP),  (53)
PoeB(Po,m0) QEQo

Ey(n)=_min  min D@Q|P),  (54)
PieB(P1,m1) QEQu

where Qo, Ql are df:ﬁned in (40), ({1). Then, for any distrib-
ution pair Py € B(PO,ATO)Z P, € B(Py,r1), the corresponding
error exponent pair (Fy, E) satisfies

Ey(ro) < Eo, E,(r1) < Ey. (55)

Figure 1 depicts the mismatched probability distributions
and the mismatched likelihood ratio test as a hyperplane
dividing the probability space into the two decision regions.
The worst-case achievable error exponents of mismatched
likelihood ratio testing for data distributions in a divergence
ball are essentially the minimum relative entropy between
two sets of convex probability distributions. Specifically, the
minimum relative entropy between B(]:’o,ro) and Q; gives
E,(r0), and similarly for £, (r1). Observe that in the matched
case, i.e., 150 = Py and 151 =P, Q,\U = Q,\l.

Furthermore, since the Rényi divergence D, (Q|P) is con-
vex in P for a > 0 [15], and f-divergence D;(Q|P) is
convex in P [22], then (53) is a convex optimization problem
and the KKT conditions are also sufficient. In addition, for the
relative entropy, writing the Lagrangian gives

L(Q, Po,ho, Ny, vo, v4) = D(Q||Po) + Ao (D(Q]| Pr)
- D(@Q|Po) + ) + )\6(D(po|\Po) —79)

+VO(ZQ(x)—1) +1/6(ZPO(x)—1). (56)

reX rEX

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 10, OCTOBER 2022

B(Pl, 7‘1)

P(X) BRoro) 1\ DQ|iy) ~ D(QIP) =

Fig. 1. Mismatched likelihood ratio test with real distributions in divergence
balls B(PQ, 1”0)7 B(P1 s 7‘1).

where Ao, A1, 1,1 are the Lagrange multipliers correspond-
ing to the optimization (53) constraints. Differentiating with
respect to Q(x) and Py(z) and setting the derivatives to zero
we have

Q(x) Py(x)

1+1 Ao log — = 57
+ log Po(z) + Ao log Br(x + vy =0, (57)
Q@) B@ g (s

CPy(x) "OPy(a)

respectively. Solving equations (57), (58) for every x € X we
obtain

D=0 () P (1
0, (1) = L@ @A)

Y aex Bola) Py ™ (a) P (a)’

(59)
Po(e) = =@, (1) + (1 - 157 ) Bola), (60
- 14+ X0 1+ X ’
where \g > 0. Moreover, from the cgmplementary s}ack-
ness condition [26] if for all /% in B(Py,ro), D(Py||FPo) —
D(Py||P1) < 4 then
D@, |1P0) - D, IP1) =4,
D(R|Py) = ro,

(61)
(62)

Otherwise, if there exists a P, in B (150, 70) such that
D(Py||Po)—D(Pyl||P1) > 4, then for this distribution Ey = 0.
Therefore, if

D(Py||Py) — D(Pol| P1) < 4 (63)

max
PyeB(Py,r0)

holds, for all Py in the relative entropy ball, then E,(ro) >
0, otherwise E(ro) = 0. Similar steps hold for the second
hypothesis by only substituting the distributions.

Next we will study how the worst-case error exponents
(EO,El) behave when the divergence ball radii 7,7, are
small. In particular, we derive a Taylor series expansion of
the worst-case error exponent, when the true distributions
Py, P, are within a Rényi entropy ball of radii ro, r; centered
at the testing distributions Py, Py. This approximation can also
be interpreted as the worst-case sensitivity of the test, i.e., how
does the test perform when actual distributions are very close
to the mismatched distributions.
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Theorem 3: Consider a hypothesis testing setting with mis-
match, with true distributions Py, P; and testing distributions
150, P,. For every r; > 0, where i € {0,1}, and threshold %
satisfying

—D(Bo||P1) < 4 < D(P1|| Po), (64)

the worst-case error exponents E,(r;) can be expressed as

Ei(ri) = B; —\Jri - 0:(Py, P, A) + o(\/r),  (65)
where .
(BB oAy 2y [ @AX)
QZ(PO;PDPY) - avarR(pz(X)) (66)

and Q A is the minimizing distribution in (11) for test 45

Observe that as a result of the /r expansion, the slope of the
exponent for small 7 tends to infinity, which implies that the
likelihood ratio test is very sensitive to mismatch. In addition,
observe that the sensitivity terms 6;( Py, Py, 4) in (66) can also
be expressed as the chi-squared distance between Q x and P;.

Proposition 1: For every Py, P, € P(X), and 4 satisfy-
ing (64)

s~
91(P0,P1,’y)§0.

9 . .
Oo(Py, P1,75) >
0( 05 1;7)70a 8’3/

o (67)

This proposition shows that 90(]50, Py, %) is a non-
decreasing function of 4, i.e., as 4 increases from — —D(By|| )
to D(Py||By), the worst-case exponent EOA(TO) becomes more
sensitive to mismatch. Conversely, 01 (Py, P1,%) is a non-
increasing function of 4, i.e., as ¥ increases from — —D(By||P1)
to D(Py||Py), the worst-case exponent £, (r1) becomes less
sensitive (more robust) to mismatch. Moreover, when A = %,

we have
~ I:) $p11‘
01(@) = \/ FPo(z)Pr(z) 68)
>

and then 90(]50,?1,'?) = 91(]50,]51,'}). In addition, @
minimizes Fy + F, yielding [27]

1
2

Eo + By = D(Qy|Fo) + D(Q4 | P1) 69)
N Q?#?X>D<@||Po> +D@QIP)  (70)
where B(FPy, 1) = —log ) cx Py(z)Py(z) is the Bhat-

tacharyya distance between the mismatched distributions
Py and Pj. This suggests that having equal sensitivity (or
robustness) for both hypotheses minimizes the sum of the
exponents.

Example 1: When v = 0 the likelihood ratio test becomes
the maximum-likelihood test, which is known to achieve the
lowest average probability of error in the Bayes setting for
equal priors. For fixed priors 7, m;, the error probability in
the Bayes setting is € = mgeg + 7 €1, resulting in the following
error exponent [18]

E = lim ——1oge—m1n{E0,E1}

n—oo

(72)
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Fig. 2. Worst-case achievable Bayes error exponent for the Rényi divergence
balls of order v € {1,1,2}. The solid lines correspond to the optimization
problems in (53), (54) and the dashed lines correspond to the approximated
Bayes exponent using Theorem 3.

015 - X27 min{EO:El} \\
--- X% min{Ey, £} \\
0.1 _H2,min{E0,E1} \\\ 1
T H27 min{E07E1} \\\
005 | I N | I
104 1073 1072
r

Fig. 3. Worst-case achievable Bayes error exponent for x2 and Hellinger
divergence balls. The solid lines correspond to the optimization problems
in (53), (54) and the dashed lines correspond to the approximated Bayes
exponent using Theorem 3.

assuming that the priors 7y, 7; are independent of n. Consider
Py = Bern(0.1), P, = Bern(0.8). Also, assume 7o = 1 = -
Figure 2 shows the worst-case error exponent in the Bayes
setting given by min{EO,El} by solving (53) and (54) as
well as min{E,, E,} by the approximations in (65) for
the Rényi divergence balls of order o € {3, 1,2}. Similarly,
Figure 3 shows the worst-case error exponent in the Bayes
setting for two f-divergences, x?, and Hellinger divergences.
We can see that the approximation is good, especially for small
radii 7.

Moreover, it can be seen that error exponents are very
sensitive to mismatch for small r, i.e., the slope of the
worst-case exponent goes to infinity as r approaches to zero.
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IV. GENERALIZED LIKELIHOOD RATIO
TESTING SENSITIVITY

Next, we study the performance of Hoeffding’s test under
mismatch. Similarly to previous section, Py denotes the actual
distribution that generated the observation and Py indicates the
mismatched distribution used in the test. Hoeffding’s test using
the mismatched distribution Py with threshold 4 is given by

QB(TE) = H{D(TprO) > '3/}

Note that since the original test by Hoeffding does not
depend on the second distribution (cf. (18)), the test is also
independent of the second probability distribution in the
mismatched case. Therefore, by Sanov’s theorem, for every
Py, P; the error exponent Ey is equal to

D(Q|[Py).

(73)

F = min

= ) (74)
QEP(X):D(Q[ Po) <

The above optimization is a convex problem and by KKT
conditions the minimizer is the tilted distribution between
Py and P, given by,

T 1
5 By (@) B (x)

Qu(x) = T 1 ) (75)
Yacx Fo " (@)P) 7" (a)
and where p is the solution to
D(Qull o) = 4. (76)
Similarly, by Sanov’s theorem, the error exponent Ey is
Ey = min  D(Q||Py). (77)
QEP(X):D(Q|[Fo) =%
It is clear that if D(P0|\150) > 4 then Ey = 0. Hence,

we assume D(Fy||Fy) < 4. Unfortunately, the solution to
the above error exponent cannot be derived by convex opti-
mization since the constraint is the complement of a convex
set. In the following, we introduce an upper bound to the
achievable exponents.

Theorem 4: For fixed Py, Py € P(X) the error exponent
Ey of Hoeffding’s test with mismatch is upper bounded by

Eo < (% = V231 Po — Pollrv) ™, (78)
where || - ||y is the total variational distance, and (z)* =

max(0, x).

Observe from Theorem 4 that the highest achievable expo-
nent in Hoeffding’s test is equal to the achievable exponent
when ]30 = Py, i.e., the mismatch will always result in
suboptimal error exponent tradeoff. However, the likelihood
ratio testing can still achieve an optimal error exponent trade-
off under mismatch if the mismatched distributions are tilted
version of actual distributions. The universality of Hoeffding’s
test can explain the higher sensitivity of Hoeffding’s test
toward mismatch.

For the small thresholds 4 we can also approximate (77) by
Taylor expanding the D(Q||Py), D(Q||Py) to get

Eo = min
éeT{ez&
176=0

1 A
56776+ 0(16]2) +o(6]2)  (19)
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where
0 = (Q1) = Po(w1), -, Qlajx) — Polwx) s (80)
) = (Q(z1) — Po(a1), .. S Qzx)) — AO(J?\X|))T, (81)
J—diag<P0 $1)’..'7P0($|X)>7 (82)
J_diag<l30(x1)’.”7]50(33|X)>. (83)

Observe that, since (77) is minimizing a convex function over
the complement of the convex set, the optimizing distribution
is always on the boundary of the set and hence D(Q* | Py) = 4
where Q* is the optimizing distribution. Therefore, we can
conclude that ||Q* — Py|| = O(+/3). Similarly by the assump-
tion D(Py||By) < 4, we get that ||Py — By|| = O(v/3), and
hence by the triangle inequality ||Q* — Py|| = O(y/4). Substi-
tuting these into the error term we get that the approximation
error is o(¥). Next by replacing Q(z|x|) =1 — Zlﬁfl Qx)
and dropping the equality condition we have
jo. ; 1, T 1 to(5
0= ~ min Q" HQ+h" Q—1+0(%) (84)
~1QTHQ-hTQ+4+1<0 2

where

H(X-1x1x]-1)

1 1 1
mO T RED Po([X])
1 . 1
_ (EH) ' P 7
i 1 ’ 1
Bo(%T) B(AT-T) T B(AD)
1 1 \T
h("fl—“”:(— S ) . (85)
RN(E) Po([X])

and H, h are H , h with Py replaced by P,. This optimization
problem is quadratic optimization with a single quadratic
constraint. Using the Schur complement to express the dual
problem, we obtain [26, Appendix B]

FEy = maxv (86)
A>0
R>0
where
1 (H+XH h+ \h @7
S 2 \RT +ART 24201 4+4) v

This optimization problem is convex as the dual problem is
always concave. In addition the strong duality holds for this
problem when the Slater’s condition is met that is there exist a
Q such that the —%QTIAIQ—HTQ—P}—H < 0 [26]. Therefore,
one can find the mismatched type-I error exponent for 4 small
enough by conventional convex optimization methods.

We now focus on the worst-case error-exponent perfor-
mance of the mismatched Hoeffding test when the distributions
generating the observation fulfil (51), i.e., they are inside a
divergence ball of radii r¢,r;. Figure 4 illustrates the mis-
matched probability distributions and the mismatched Hoeffd-
ing test as the relative entropy ball centered at P, divides the
probability space into the two decision regions.
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Ay
N4 B
Ao P
Po

P(X)

Fig. 4. Mismatched Hoeffding’s test with real distribution Py from a
divergence ball B(Po, o).

For every P, the achievable error exponent Ej does not
depend on P; therefore, for every ry, the least favorable

exponents Eo(ro), defined in (77) can be written as
Ey(ro) = min_ D(Q|FR),
Po:Po€B(Po,ro)

QEP(X):D(Q|Po)>%

(88)

where B(Po,ro) is the divergence ball centered at Py with
radius 7o (51) with divergence measure parametrized by a.
As opposed to the mismatched likelihood ratio test where the
worst achievable exponent could be found by solving a convex
problem, here, the optimization problem in (88) is non-convex
and in principle difficult to solve. However, as the next theorem
states, we are still able to perform a Taylor series expansion
to find the behavior of the worst exponent E,(ro) when the
radius of the relative entropy ball rg is small.

Theorem 5: Consider a mismatched generalized likelihood
ratio test with real and test distributions Py, P; and ]50,
respectively. For every o > 0, we have that the error exponent
E,(ro) can be approximated as

Eqy(ro) = Eog — /70 - 00(Po,7) + o(v/T0),  (89)
where
5 2 Q(X)>
00(Py,q) = “Varp | = , 90
olFo, %) Q:D(QlIPr)— @ aLIPO(Po(X) o0

is the sensitivity of Hoeffding’s test with mismatch.

Observe that whole the expressions (66) and (90) are struc-
turally similar, (90) has an additional optimization step. The
following result compares the sensitivities of the worst-case
mismatched likelihood ratio and Hoeffding’s test sensitivities.

Proposition 2: Let 150 be fixed and 151 be some distribution
used in the likelihood ratio test. Also, let Hoeffding’s test
sensitivity denoted by 6 (Py,4"), and 6 (Py, Py, 4™) be the
sensitivity of likelihood ratio test when the threshold 4™ is
chosen such that the type-I error exponent is equal to 4. Then,
we have

08 (Po,4")
- e(l)rt (pO; pl; ,?lrt) -

(h—1)?
hlogh+1—h'

oD
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where .
min {1, 4" + min Po(z
_ { ’Y. AxeX 0( )}. 92)
mingex Po(x)
Also, we have the weaker inequality
05 (Po, A" 4
0( 0’ ) S - _ (93)
Okt (Py, P, 4™) mingex Fo(z)
V. SEQUENTIAL PROBABILITY RATIO
TESTING SENSITIVITY
The sequential probability ratio test & = (¢,7) with

thresholds 4,41 and mismatched distributions 150(3:), P (x)
is given by

F=inf{n>1:9, >4 or S < %1}, (99
where
n
. B
S =>"lo Ao(x’), (95)
i=1 Py (i)
and
- o if S; >4
R S (96)
1 if S-; S -1

Similarly to the previous sections, in order to study the
sensitivity of the mismatched sequential ratio test, we first
study the highest achievable error exponents, i.e,

E‘l(Eo)ésup {El S R+ : H’?Q,’Ayl, dne Z+ S.t.EPO [f'] <n,
Ep,[7] < n, e(®) < 2-nEo gnd e (9) < 2_"E1},
o7

which is analogous to the definition in (23). Similarly to (24),
we can also define the following tradeoff

Eq(Ey)
S sup {El ER+ 3’}/0,’)/1, 3”0;”1 c Z-l—a StEPO[ ] S
Ep, [7] < n1, eo(®) <2700 and ¢, (D) < 2—n1E1}
(98)

The next theorem provides the error exponents Eo, El and
the average stopping time Ep,[7],Ep, [7] of the mismatched
sequential probability ratio test as a function of thresholds
;)/Oa ’3/1 . A oA

Theorem 6: For fixed probability measures Py, P;, let
Py and P; be such that

0< D(Py||P1)=D(Po||Py),0< D(Py|| Po)=D(Py|| Pr). (99)

Then, as 4p,y1 — 00, the pairwise probabilities of error €, €1
are given by

_ D(PollP1) ’3’1

€g = Cp e PPolP)-D(FoliPo) (100)
D(Py || Pg) ’YO

€1 =2¢C1-¢€ " D(P1 1 Po)—D(P1 [ P1) (101)
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where ¢y, ¢ are positive constants. Furthermore, the expected
stopping times are given by
. Yo
Ep, 7] = : —(1+0(1),
’ D(Ro[|Pr) — D(Fol[ Po)
G ———
D(Py|Fo) — D(Py|[ 1)
The next result states that if the average drift of the
likelihood ratio changes sign under mismatch, the probability
of error under that hypothesis tends to one.
Theorem 7: For fixed Py, Py, let Py be such that

(102)

(1+o(1).  (103)

D(Py||P1) — D(Po1 o) < 0. (104)

Then, as thresholds 7,41 approach infinity, ¢y — 1. Similarly,
letting P; such that

D(Py||By) — D(Py||Py) < 0, (105)

€1 — 1 as thresholds 49,41 approach infinity.

Corollary 1: Under the conditions of Theorem 6, the
achievable error exponent tradeoff according to (97) is given
by

~ D(Py||By) — D(Py | Py)
Ey = D(P,|| P _ = (106)
0= DU D By — D )
By = D(Py|| Py 2LL0lF) = DRI (107)
D(P\||Py) — D(P1||Pr)

where to achieve these exponents thresholds 7,47 should be
chosen as

40 = n(D(Po||Pr) = D(Po|| o) + o(1)),
41 =n(D(P1||Py) = D(P1||Py) + o(1)).

Moreover, the achievable error exponents according to (98)
satisfy

(108)
(109)

A 1
By = - D(P1||P),

Ey = (D(Py||Py), ;

(110)

D(PlHI:DU)—D(Plnf:Dl) ny
D(Po||Pr)—D(Pol|Po) ™o

EoEy = D(Py||P,)D(Py|| Py).

where ¢ = . Equivalently, we have that

(111)
To achieve (111), thresholds #g, 41 should be chosen as

40 = 1o (D(Po||Py) — D(Pol| Py) + 0(1)),
41 = n1 (D(Py|| Py) — D(Py|| Py)) + o(1)).

By comparing (34), (111) we can conclude that mismatched
sequential probability ratio test has the same performance as
the case with no mismatch, i.e., there exist thresholds g, ¥1
such that the expected stopping time condition is met, and
the error exponents satisfy (111). The intuition behind the
existence of thresholds such that the optimal tradeoff is achiev-
able relies on the fact that the mismatched distributions only
cause a change in the drifts of the random walk generated by
S,,, and hence one can choose the thresholds appropriately to
rescale the random walk behavior to achieve the optimal expo-
nents. However, choosing 7p,; to achieve (111) requires the
knowledge of true probability measures Py, P; by (112), (113),
which might not be possible. Note that, in the case of the

(112)
(113)
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likelihood ratio test, the number of samples is fixed. Hence,
we cannot change the speed of decision-making when using
the mismatched distributions, and mismatched distributions
change the drift of the log-likelihood ratio, but rescaling the
number of samples described for the mismatched likelihood
ratio is not possible; therefore, mismatch can reduce the
exponents. Having this in mind, we consider the performance
of the mismatched probability ratio test when the thresholds
are selected from (108), (109), (112) and (113) but replacing
Py, P, by the mismatched measures 150,]51. In fact, this is
precisely the relevant practical scenario where only the testing
probability measures P,, P, are available. In this scenario,
mismatch in probability measures will induce a mismatch in
expected stopping time and the error exponents. Consider the
case where (32) is used with mismatched measures 150, Py,

Ao=n(D(Py||P1)+0(1)), 41 =n(D(Py||Py)+o(1)). (114)
Using (114) and by Theorem 6 we obtain
D(Dy| Pr)
D(Py||P1) — D(Po|| P)
D(Py||Py) — D(Py|| 1)

Therefore, the mismatch in the thresholds, induces expected

stopping times that may be larger than n. Letting n~! =
Q(P0||P1) _ Q(Pl\\po) _

D(Po||[P1)=D(Po||Po)” D(P1||Po)—D(P1| Pr)

ing to definition (97) we have the following exponents,
By = D(Py||P)D(Py | Fy) .
D(Py||Py) = D(Pol|Po) ™
i = D@ B)D(Bo| P
1= = —1).
D(P[|Py) — D(P1[| Pr)
Similarly to (35), for the second definition of exponent,
we need to multiply one of the thresholds by ¢, and the
corresponding exponents will be equal to ¢ and % times the

above exponents.
We now analyze the worst-case error exponents, defined as

E,(r;) 2 (119)

Ep,[7] =n (I+o0(1)), (115

Ep [f]=n (116)

max , and accord-

(117)

(118)

Eiv i€ {Oa 1}7

min
P,eB(P;,r;)
where B(Q,r) is the divergence ball of radius r centered at
distribution @) defined in (52). From (117), we observe that
error exponents of mismatched sequential probability ratio test
are a function of both data distributions Fy, P;, as opposed
to the fixed sample-size setting where Ey is independent of
P;. The next theorem shows the behavior of the worst-case
exponents when the true distributions are within a small
divergence ball of radii ro,7; and center 150, ]51, respectively.

Theorem 8: Let P;, P; are defined on the probability sim-
plex P(X) and r; > 0, for ¢ € {0,1}. Define 7 = 1 — 4
to be the complement of index ¢. Then, the worst-case error
exponents can be approximated as

E,(ri)=E;—min { 21:\/7“3‘ 0,,5(Po, P), \/Tz - 0:( P, 151)}
=0
+o(Vio+ v ),

(120)
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where
A 2Var 4 ( p;log (X) =7
s (Pos Py =95 " ’mf?“) a2
o7 P(X) }(X)>
0:(Py, P1) = =Var, | log = + pi—= , (122)
(o) PZ( *Rx) RO
D(P|| P,
pi = ( A7/|| Az). (123)
D(P;||7%)

Next assuming 7y = r; = r, we obtain the following result.
Corollary 2: Foreveryr =rg =11 > 0,andi € {0,1},7=

1—71,
Ey(r) = E;—\/r - 0;(Po, P1) +o(V7), (124)
where
5B 2 Py(X) J%(X)>
0:(Py, P) = ZVar, | log = = . (125
=g arP7’<Ong(X)+p P

As an example, consider Py = Bern(0.1), P = Bern(0.8),
and r = rg = 7r; and the relative entropy is used as
the f-divergence ball measure of distance. Figure 5 shows
the worst-case error exponent given by solving non-convex
optimization problem in (119) with precision of 1073 as
well as the approximation Eo obtained from (124) by
ignoring the o(y/r) term. Observe that there exists some
gap between the approximation Eo and the actual exponent
Eo in (119). The approximation consists of a linear approx-
imation of the objective and second order approximation of
constraints and computing it is straightforward for arbitrary
distributions and radii. Instead, computing the exact optimiza-
tion problem Eo (119) is difficult, as it is a non-convex
optimization problem involving a highly nonlinear objective,
cf. Egs. (117)—(119).

VI. ADVERSARIAL SETTING

In this section, we study the sensitivity of hypothesis testing
under a perturbation of the observed samples by an adversary.

A. Likelihood Ratio Test

We consider the worst-case scenario where an adversary
can change the sample type to T;, where the change is
assumed to be limited to a divergence ball around the type
of actual sequence Ty generated by either of the hypothesis,
ie., d(Tw,Ta@) <r.

Similar to the case with the distribution mismatch, by direct
application of Sanov’s theorem, we can find the worst-case
exponents by solving the optimization

Ey(r)=_min  D(Q|P), (126)
0
Q:d(Q,Q)<r
Ei(r)= min  D(Q|P), (127)
QeQy
Q:d(Q.Q)<r

where
Q4™ = {Q e P(X): D(Q||Ry) — D(Q|| P1) > 7}, (128)
Qi = {Q € P(X) : D(Q||Py) — D(Q|IPr) <~} (129)
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Fig. 5. Worst-case achievable type-I error exponent with a relative entropy
ball of radius r. The solid line corresponds to the optimization problems

in (119), and the dashed line corresponds to the approximated exponent using
Theorem 8.

Furthermore, in the case where the distance d is the
f-divergence ball or the Rényi divergence ball of order a €
0,1], d(Q,Q) is jointly convex [15], [22]. Hence, (126) is
a convex optimization problem and, the KKT conditions are
also sufficient. Writing the Lagrangian for & = 1 we have

L(Q. QA1, 22, v1,v2) = D(Q[| Po) + A1 (D(Q|| )
— D(Q[Po) +7) + 2(DQQ) — )

+V1(ZQ(:U)—1) +VQ<ZQ(:¢)—1). (130)
reX TEX

Differentiating with respect to Q(x) and Q(z) and setting the
derivatives to zero, we have

Q(x) Q(z) _
1+10gP0({E) +/\2<1+10g Q(m)) + v, =0, (131)
Po(x) Q(z) _
A1 log P (J)) — AQQ(J;) + 9 =0, (132)

respectively. Solving equations (131), (132) for every x € &,
we obtain

Q)\l,)\z ((E) = PO(x) X

A2
A A Po(a
(1 TR TR s P?Exg)
< Py(a)

-1
,\2> , (133)
ex (1—%7+§—210g P”(“))

IS}

Pl(a)
A Po()
Q)q,)\z ((E) = N N Po(z) 1+Xo
( — %7 T3, log P?(x))
’ -
( 0(a) _ 1“2) . (134)
agX (1—%74—% log P?EZ;)
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where A1, A> can be find by solving D(Qx, 2llQayns) = 7
and D(Qx; 2, || P1) — D(Qaq .1 Po) = . Next, we will study
the error exponents’ worst-case sensitivity when the radius of
the divergence ball is small.

Theorem 9: For every r > 0 we have

Ei(r) = E; — /1 0:(Po, P1,7) + o(V/7), (135)
where
2 A (X)
0;(Po, P1,v) = — 1 , 136
( 0 1 P)/) ava‘rQ,\< og P(X) ( )
and (X)) is the minimizing distribution in (11).

Remark 3: Unlike the distribution mismatch where
205 (507151,@) > 0, 205t ({;Doyplﬁ) <0,

the sensitivities of
the hkehhood ratio test towards sample mismatch are not
strictly-increasing nor strictly-decreasing. Instead, it can be
shown that the derivative of the sample sensitivities respect to
the threshold # are proportional to the skewness of the random
variable log 1(X) under the distribution @(X) which can
have any sign, depending on P, and P;. However, similarly
to the case of distribution mismatch, the sensitivities under
both distributions are equal when A\ = %, ie., 90(]50, ]51, ) =
91(150, ]51,&). More generally, for any A, by substituting Q,
we have

o Qx(X)
Oo(Fo, P1,75) Vare, <10g PO(X))

01(Py, P1,4) 4
b b X
1(FPo, 1, 7) Varg, <log Qx( )))
Py (@) P (w)
VaI‘Q/\ Kk + log B0 (X)
= Pw— (133)
Varg, ( — Mog 11;1“((;)))
= (139)
Varg, <(1 —A)log g“((f())>
A N2
= (=) o
where 1 = —log Y, » Py~ (a) P (a).

Next, we will compare the sensitivity of the likelihood ratio
test toward distribution mismatch and sample mismatch.

Corollary 3: For every Py, P, € P(X) and i € {0,1},
we have

Pl(x) dist
(s Jo -

where 655t 924V are the likelihood ratio test distribution and
adversarial setting sensitivities in (66) and (136).

As can be seen from the above result, having distribution
mismatch renders the test performance more sensitive than an
adversary tampering with the observation when the divergence
ball radii are equal.

Example 2: Consider Py = Bern(0.1), P, = Bern(0.8).
By finding the optimizing distribution ), we have

B} <7 < 07,

(141)
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0dist = 1.136, #39¥ = 0.854 and the lower bound in (141)

equals to 0.151.
Observe that for small radii, the approximations for worst
case mismatch and worst case adversarial settings are accurate.

In this case, by equating the approximations of mismatched
det

. . adv
and adversarial error exponents, we have that if ’"dm = aldv
then, the worst case error exponents under both scenarios are
equal.

B. Generalized Likelihood Ratio Test

Next, we consider the worst-case Hoeffding’s generalized
likelihood test in the adversarial setting. Similarly to the
likelihood ratio test, we assume the observer receives samples
with the type 77, which satisfies d(T},7%) < r and T is
the type of the original sequence generated by the unknown
hypothesis. By direct application of Sanov’s theorem, we have

Ey(r) = min  D(Q[F), (142)
Q:D(Q||Po)>~
Q:d(Q,Q)<r
_min
Q:D(Q||Po) <y
Q:d(Q,Q)<r
In this scenario, unlike the case with distribution mismatch,
the adversary can change both error exponents. It is clear that
E, is non-convex optimization, and for the f-divergence or
the Rényi divergence of order o € [0,1], E; is a convex
optimization and hence easy to solve. Like previous sections,
we will look into the sensitivity of error exponents when the
divergence ball radius is small.

Theorem 10: For every r > 0, the worst-case error expo-
nents can be approximated as

Ey(r) = D(Q||Py), (143)

Ei(r) = E; — /1 0:(Py, P1,7) +o(\/ro),  (144)
where
o2 Q(X)
90(P07P1;'Y)—EQ:D(%‘?§0) Var g (logP(X)) (145)
2 Qu(X)
01(Po, P1,y) = ~Varg, (log B X > (146)

are the type-I and type-II error exponents’ sensitivities of the
Hoeffding’s test, and Q,(X) is the minimizing distribution
in (21).

In this scenario, both exponents will be affected by a change
in the observation type as opposed to distribution mismatch,
where only the first exponent would change as a result of
the mismatch. Similarly to the likelihood ratio test, we have
that distribution mismatch is more sensitive than adversarial
observation perturbation.

Corollary 4: For every Py, P, € P(X) we have

g5 < 65, (147)

where 65t 934V are the generalized likelihood ratio test
distribution and sample sensitivities in (90) and (145).

It is easy to see that Corollary 4 is an immediate result of
Corollary 3 by taking the maximum of the both distribution
and sample sensitivities over all distributions Q such that

D(Q||Po) = .
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C. Sequential Probability Ratio Test

Finally, we study the impact of adversarial observation per-
turbation on the error exponents of the sequential probability
ratio test due to sample mismatch. In this setting, we assume
that the adversary can perturb the received sequence type in
a divergence ball with a specific radius when the test stops.
Formally, the adversary can observe all the future samples
(24)$2, and alter the samples to (z})$°,, with the constraint
that for any positive n the sample types and perturbed sample
types of ()7, (2})2, satisfy d(Ty,T.) < 7, and the
sequential probability ratio test calculates the log-likelihood
ratio using the perturbed samples, i.e.,

SR G I 5 1C)

The worst-case error exponent trade-off in the adversarial
setting can be defined as

(148)

E\(Ey,r) & inf
(T, Ty)<r

dng,ny € Zy, S.t.EPO [i] <ng,Ep, [i] < n,
eo(P) < 9-m0E, gpd €1 (P) < 9-mE, }
(149)

sup {E1 € Ry 1 30,71,

where the worst case stopping time is defined as

f=inf{n>1:8, >7,5, < -7} (150)

This model is the worst possible adversarial setting as the
adversarial can see future samples and change the whole
sequence until the stopping time to maximize the stopping time
and also minimize the error exponents. We find a lower bound
on the error exponents and an upper bound on the average
stopping time in this adversarial setting.

Theorem 11: Forevery r > 0,4 € {0,1}, definez =1—ito
be the complement of index i. The worst-case error exponents
can be approximated as

Ey(r)E,(r) =(D(P|IPo) —2v/7- 8P, Pr))

(DRl = 20/ 61 (o, P1) ) + o).
(151)
where

ei(Po,Pl) = g\78.1‘137’<10g5> (152)
« P,L
Theorem 11 provides only a lower bound to the worst-case
error exponents in the adversarial setting. Thus, we cannot
compare the sensitivities derived in the mismatched case with
the adversarial worst-case sensitivity.

APPENDIX A
PROOF OF THEOREM 1

~ We show the result for Ej and similar steps are valid for
E. The type-I probability of error can be written as

> Pl(x).

o mEXT
D(Tz||Po)—=D(Te || P1) =%

€ = (153)

6749

Applying Sanov’s Theorem to (153) to get (38) is imme-
diate. The optimization problem in (38) consists of the
minimization of a convex function over linear constraints.
Therefore, the KKT conditions are also sufficient [26]. Writing
the Lagrangian, we have

L(Q, A\, v) =D(Q||Py) + A(D(Q| Pr) — D(Q| Po) +4)
+V(ZQ(:C)—1). (154)

reX

Differentiating with respect to (x) and setting to zero we
have

Q) + Alog — +v
PO (J?) P1 ((E)

Solving equations (155) for every x € X we obtain (42).
Moreover, from the complementary slackness condition if [26]

Py(x)

=0.

1+ log (155)

D(Py||By) — D(Po|| Py) < 4, (156)

then (44) should hold. Otherwise, if (156) does not hold then A\
in (155) should be zero and hence Q 2 = Fo, Eo = (. Finally,
substituting the minimizing distribution Q 2o (42) into (154)
we get the dual expression

g0 =2 —log (3 PPy @) ().

reX

(157)

Since the optimization problem in (38) is convex, then the
duality gap is zero [26], and this proves the (46).

APPENDIX B
PROOF OF THEOREM 2

For convenience, in this section, we make explicit the
dependence of Q1 and El on the threshold of the test 4, and
denote them by Q; (%) and Ey (7).

First, notice that F is a non-increasing function of 4 since
for every 41 < 42 we have

Q1(F1) C Q1(F2), (158)

hence

E1(’72) < E1('?1). (159)

Therefore, in the Stein’s regime we are looking for the smallest
threshold such that limsup,, .. €o < €. Let

V(PO;I:)Ovpl)
n

4=D(Py||Py)—D(Py|| Py)— Q '(e), (160)

where
- P
V(Py, By, P) = Varp, {1og FO]
1

= Z Py(x) < log ]]::0

zeX 1

2
) (DR - D(Po| )

(161)

and Q™! (e) is the inverse cumulative distribution function of a
zero-mean unit-variance Gaussian random variable. For such
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4, the type-I error probability of the mismatched likelihood
ratio test is

1 — Py(X; A 5
— lﬁ s ﬁ < D(R||P1) - D(Ps|1 )
WQI@] . (162)

Observe that D(Py||P,) — D(P, || Py) = Ep, [log ?8{(” Let

S, = LS i(x;), where i(z;) = log POEI‘; Letting Z
be a zero-mean unit-variance Gaussian random variable, then,
by the central limit theorem we have

lim sup ég

= limsupPg V(S EIADO [i(AX)]) < Q_l(d] (163)
e V(P07P0)P1)

=P[Z<Q ()] (164)

—e. (165)

Therefore, asymptotically, the type-I error probability of mis-
matched likelihood ratio test with 4 in (160) is equal to e.

Next, we need to show that for any threshold 4 and £ >
0 such that

limsup# + ¢ < D(Py||Py) — D(Po|| Py), (166)

the type-I probability of error tends to 1 as the num-
ber of observation approaches infinity, which implies that
D(Py||By) — D(Py||Py) is the lowest possible threshold that
meets the constraint limsup,, . ég < e. Hence, the corre-
sponding E; (%) is this highest type-II exponent that meets
the constraint. In order to show this, define the following sets

5 = {weX":HTw(a:)—Po(a:)Hoo <5}, (167)
D= {z € X" :|D(T.||Po) — D(T.||P1)
— D(Py|| ) + D(POHPI)‘ <e}, (168)
D= {x € X :D(T4|Py) - D(T, | Py)
— D(Py||Py) + D(Py|| Pr) > —¢}.

(169)
where ||| is the norm infinity. From the continuity of
D(.||P) we have that for any ¢ > 0 such that
|D(T || Po)—D(T | Pr)— D(Po| Po)+D (B || P1)| <e. (170)
there exists > 0 such that for all T}, satisfying

T (2) = Po(a)lle <6, (171)
(170) holds. Therefore, when (166) holds
lim inf €($) >liminf » ~ P (x (172)
n—oo n—oo
z€D
>liminf » Pz (173)
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Now from the continuity argument, there exists a  such that

Y F@) =) B

zeD €5

(174)

Set §,, = I%‘L—" Thus, for sufficiently large n, d, < 4,
Therefore, we have

lim inf e($) > liminf > Pj'(a (175)
n—oo n—oo
x€&s,,
2|x
> lim _ 2] (176)
n—o0
=1 (177)

where the last step is by Hoeffding’s inequality [28] and union
bound. Therefore, for any 4 < D(Fy||Py) — D(Fo||P1) type-1
error goes to unity which concludes the theorem.

APPENDIX C
PROOF OF THEOREM 3

We will use the following two lemmas which are the local
approximation of the Rényi Divergences and f-divergences.

Lemma 1: [15] Let P and @ be two probability distribu-
tions over the same alphabet X, the Rényi divergence of order
« can be locally approximated by

2

_a (Pl@) - Q) 2
Da(PQ) = 5 ;{ TM(IIP@)—Q@))II )-
(178)
Lemma 2: [22] Let P and @ be two probability distribu-

tions over the same alphabet X', and let the convex function
f(t) to be twice differentiable at ¢ = 1. Then the f-divergence
using such function can be locally approximated by

(P(x) — Q(x))

2

pyrle) - L 3
reX
+o(||P(z) — Q(x))|1?) (179)

We show the result under the first hypothesis, and similar
steps are valid for the second hypothesis. Also, since the
second-order approximation of the Rényi divergence and the
family of twice differentiable f-divergences are only different
in a constant, by setting « to be the order of the Rényi
divergence and « to be /(1) we can prove the result for both
divergences simultaneously. Consider the first minimization
in (53) over Q, i.e.,

Ey = min D(Q||Fy).
QeQo

(180)

Observe that by assumption, Py(z) > 0 for each z € X.
Therefore, for every « there exists a positive 7y such that
Py(z) > 0 for every Py € B(Py, 7o) (for example in the case
of the Rényi divergence with « > 1, Py(x) > 0 for every finite
r0). Hence, for Py € B (150, 7o), the relative entropy D(Q|| Fo)
is continuously differentiable in both @), Py for some positive
7. Moreover, the constraints in (180) are continuously differ-
entiable with respect to ) and also trivially with respect to P,
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since the constraints do not depend on Fy. Hence, the opti-
mization in (180) is minimizing a continuously differentiable
function over a compact set with continuously differentiable
constraints. Hence, by the maximum theorem [29], Eo is a
continuous function of P, for all Py € B(]so, 7o) with finite
radius 7o. Also, by the envelope theorem [30] we have

aEAO Q)\o ((E)
=— . (181)
8P0(.1?) P()(J))
Define the vectors
A T
VEO—< @) —L(x"()> , (182)
Py(ar)’ Po(z)x))
- T
0130 == (Po(xl) - Po(xl), ceey Po(x‘;q) - PO(.T;“X'))
(183)
Applying the Taylor expansion to Ey around Py, = B,
we obtain
Eo—Eo-f—@ VEO+0(||0POH00) (184)

By substituting the expansion (184) for the first minimization
in (53) we obtain

Ey(rg) = min

n Eo+ 07 VEy +o(]|0p,]l)-
PQEB(P(),T())

(185)

Now, we further approximate the outer minimization con-
straint in (53). By approximating d(Py, Py) we get [31]

~ 1 N
d(Fo, Po) = §0£0J(P0)0P0 +o([0r, %), (186)
where
« «
J(By) = dlag( ey = ) (187)
Po(z1) Po(z)x))

is the Fisher information matrix. Therefore,
approximated as

(185) can be

Ey(ro) =
~ min {E0+01T30VE0+0(|‘0P0||W)}
3675, J (Po)0rpy+o([0r %) <ro
170 p,=0
(188)
= min {Eo + 0£0VE0} + o(v/70),
367, J(P0)0r,<ro
176p,=0
(189)

where to get (189) we have taken o(||@p,||~) out of the
minimization and substitute it with o(||@7%, (70)|oc) Where 87,
is the optimizing solution to the minimization. Moreover,
in approximating the inequality constraint, we incur an error
of the order o(,/Tg) in [|0F . Also, from the inequality
constraint and the restriction it imposes on the length of the
vector Op, we have that ||07 [l < c\/7o + o(y/To) Where c
is independent from 7y, from which we obtain (189).

The optimization problem in (189) is convex and hence the
KKT conditions are sufficient. The corresponding Lagrangian
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is given by
L(8p,, \,v) = Ey + 0}, VE,

1 .
+ >\<§01T30J(P0)0p0 - ro) +v(170p,). (190)

Differentiating with respect to 8 p, and setting to zero, we have

VEy+ A\ (Py)0p, +v1 =0. (191)
Therefore,
1 ~ ~
Op, = —XJ‘l(PO)(VEO +v1). (192)
Note that if A = 0 then from (191) VE; = —v1 which

cannot be true for thresholds satisfying (64) since Q N F ]50.
Therefore, from the complementary slackness condition [26]
the inequality constraint in (189) should be satisfied with
equality. By solving 170p, = 0 we get

T
v = _m (193)
1T -1 (Py)1T
1 EzeX 0( )QA(JF)
== (194)
& Yex Dolx)
=1 (195)
Also by letting %BEOJ(PO)OPO =19, we have
2 1g\? = (VEy + 1) T 1(Po)J(Py)J " (Py)(VEo + 1)
(196)
_ (VEOTJ*I(PO)VEO
+ 21T (Py)VE, + 1TJ—1(150)1)
(197)
1 ) 1
Iy @ 1 (198)
@ reX ((L’) @
1, (@X)
= O[Varpo ( ]5 ) > (199)
and hence
Op, = — 2”{ J Y (By)(VEy+1). (200)
Qr(X)
éVarPO ( PU(X) )
Substituting (200) into (188) yields
Ey(ro) = Eo + 6% VEy + o(\/T0) (201)
5 2ro 1 Qr(X)
L am) o PUB(X)
EV&I'PO ( f:’o(X) )
+ o(y/To) (202)
Q/\(X)>
= Ey— 1| =2V: ° 203
0 \/ arp, ( Po(X) +o(vro)  (203)

which concludes the proof.
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APPENDIX D
PROOF OF PROPOSITION 1

We show the result under the first hypothesis and similar
steps are valid under the second hypothesis. To prove the
Theorem we need the following lemma.

Lemma 3: Consider the following optimization problem

E(y) = _min D(Q[P),

(204)
Eq[X]>y

where P,Q € P(X), and X takes values in X'. Then E(v) is
convex in 7.

Proof: Let
Q] = argmin D(Q||P) Q3= argmin D(Q||P). (205)
EQ[X]=m EqQ[X]>72
From the convexity of the relative entropy, for any
B e (0,1),

D(BQ:+(1-B)Q3||P) < BD(Q;||P) + (1 — B)D(Q||P)
(206)
g0 D(Q|IP)+(1-p) o D(QIIP). (207)

Furthermore, since @7, Q35 satisfy their corresponding opti-
mization constraints, then Eq:[X] > v, Eqs[X] > 72,
hence

EsQi+a-p)@;[X] = Br + (1 = B)r2. (208)

Therefore, 8Q7 + (1 — 5)Q3 satisfies the optimization con-
straint when v = 871 + (1 — 3)72, then

D(Q|P) < D(BQ1 + (1 - B)Q3[|P)

(209)
D@ P). (210)

min
EQ[X]<By1+(1-0B)72

< min D P)+(1— min
ﬁ]EQ[X]Zw (QIIP)+( ﬁ)]EQ[X]Z’m

Hence E(7) is convex in 7. O]
From above lemma we can show that \ is a non-decreasing
function of 4. From the envelope theorem [30]

OEo

—— =\ 211
7 A% 211

where \* is the optimizing A in (11) for the test QAS Therefore

N 9%Ey,
oy 032

>0, 212)

where the inequality is from convexity of Ey respect to
4. Therefore, we only need to consider the behavior of

NG
V:aurp0 [PO(X)

} as A changes. Taking the derivative of variance
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respect to \, we have

Q\(X)

Py(X)

2@,\(1‘) 862)\(33)
150(3?) OA

o P

reX

2000 (g 1o P
a Po(x) <Q)\( Jlog

- [958, o 2]
(215)

(216)

Py (X)]
Po(X)

= ~Ep, [r(X)logr(X)] — <Ep, [r(X)|Eg, [logr(X)].
217)

Note that Q(z),(x) are positive for all z € X. Therefore,
using the log-sum inequality [18] for the first term and Jensen
inequality [18] for the second term in (217), we obtain

AY uex Po @) Pa) 9 Var. Qx(X)
2 o Py(X)
> Eg, [r(X)]logEg [r(X)] — Eg, [r(X)]Eg, [log (X))
(218)
> Egy [r(X)]ogEy [r(X)] —Eg, [r(X)]logEy [r(X)]
(219)
=0. (220)

Also, the above inequalities are met with equality when both
log-sum and Jensen’s inequalities are met with equality, which
DX )} is
Po(X)

happens when A = 0. Therefore, for A > 0, Var 5, {
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an increasing function of \ and consequently

9 (o, PrA) > 0.

2 (221)
APPENDIX E
PROOF OF THEOREM 4
By Sanov’s theorem, the error exponent is given by
Ey= min  D(Q|R). (222)

Q:D(Q[Po)>7
The above optimization problem corresponds to the minimiza-
tion of a convex function over the complement of a convex set,
which achieves its optimum value on its boundary. It is clear
that when D(P,||Py) > 4 the error exponent equals to zero
since () = Py satisfies the optimization constraint in (222)
and D(Py||Py) = 0. Hence, we assume D(Pp||Py) < 7.
Note that since Py lies in the relative entropy ball centred
at Py, the line passing through Py and B passes through the
interior of the bounded convex set B(Po, %) and therefore cuts
the set’s boundary in exactly two points, and there exists a
point Q" such that Fy lies in between of intersecting point
and PO By writing Fy as linear combination of Po, Q such

that D(Q*||Py) = 4 and Py = BQ* + (1 — B)Py where
0<p3<1 we get
Eo= min  D(Q[AQ™ + (1—B)F) (223)
Q:D(Q|| Po)>4
< min  BD(QIQY)+ (1-B)D(Q|F) (224)
Q:D(Q|| Po)>4
=(1-0)7 (225)

where the inequality is by the convexity of relative entropy.
In order to get equality (225) we lower bound the minimization
by

min  AD(Q||Q") + (1 — B)D(Q| P) (226)
Q:D(Q|| Po)>%
> min  (1-8)DQ|F) (27
Q:D(Q||Po)>%
> (1-B)A, (228)

and by choosing () = Q* we can achieve this lower bound.
Next we find a lower bound to (3. By definition of Q* we have

D(5R - 2 h) =4

Next, by Pinsker’s inequality and lower bounding the relative
entropy we get
1 1-0 4 A 112
2| sh - =R - B =
3 0 3 ([
By equations (225) and (230) we conclude the result.

(229)

B2y < 4. (230)

2
@HPO—

APPENDIX F
PROOF OF THEOREM 5

As opposed to the likelihood ratio test, we first consider the
minimization over I for a fixed @, and proceed with a Taylor
expansion of D(Q||Py) around Py = Fy to get

Ey(ro)=_ min  D(Q[|Po)+0F,VEo+0(|0p, ),
P()ZD(P()HI?Q)ST’O
Q:D(Q|lFo)=5

231)
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where
Q) o) >T, (232)

VE0—<—]50($1>,..., A
0p0:(P0($1)—p0($1);~~'7P0($|X\)_P0(xlX\))T7 (233)

and we replaced the inequality constraint by an equality one,
since the problem is that of optimizing a convex function over
the complement of the convex set which attains its optimal
value on the boundary of the set. Next by optimizing over
Py and similarly to the proof of Theorem 3, by substituting
Q@ with Q A We get

EO (r0) = min ~ min ’ { Ep
Q:D(Q| Po)=% $0F, J(Po)0ry+o(]|0r,1%) <0
1T9P0=O
+ 65, VEy +o(llfr, <)} (234)
_ min min {EQ + BITDO VEO}
Q D(QIIPo)=4 567, (Po)8r, <ro
1767,=0

+o(v/ro),

where to get (235) we have taken the similar steps to the proof
of Theorem 3, with the difference that now the vector 0%,
is depending on the choice of (). However, this dependency
does not change the remainder term order. Observe that, from
the inequality constraint and the restriction it imposes on the
length of the vector @p, we have that %OEOJ (]50)0 p, <o+
o(y/T0) and hence §|0% ||3 < max,ex Po(x)(ro + o(y/70)),
and by equivalency of p-norms, we obtain the remainder
term. Finally, similarly to the Theorem 3 by solving the inner
optimization problem, we have

(235)

. - - 2., 1 QX)
Eo(ro) e D(rcrzlﬁr;w: DQIIFo) = | 5 Vars, | Py(X) "
+ o(y/70) (236)
) (X) |
=4 — V K ,
ep@IP=y \ o P 0(X) | ot olvio)
(237)

which completes the proof.

APPENDIX G
PROOF OF PROPOSITION 2

We are comparing the sensitivity of the likelihood ratio
test and Hoeffding’s test when they achieved the same type-I
error exponents, and where the likelihood ratio test uses the
test distribution 151. Let Q » be the minimizing distribution
of likelihood ratio test. By letting ) = Q» in (90) we get
D(Qx|/Po) = 4 which satisfies the maximization constraint,
therefore

A 2 Q(X)
08 (Py,4™) > | =Varp |= 238
0 (Fo,¥") = o Bo(X) (238)
= 0g" (Py, P1,A™), (239)
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which gives the lower bound. To upper bound the sensitivity
ratio, we have

2 1 QX)
08 (Po,4M) MaXg. p(Q| By)=4n || V2L, {po(x)}
e(l)rt(po’pl’fylrt) = XS ’
MIMp DGy Po)=A" Varp, [ P;(X) }
(240)

where the constraint in the minimization term is the set of
all test distributions P, and corresponding 4" such that the
likelihood ratio test achieves the same type-I error exponents
as Hoeffding’s test which equals to 4". Also, note that

Var s [%@J = x2(Q||Py) where x2 is the chi-squared dis-
tance. For every Py, Q we have D(Q||Py) < x2(Q|Py) [32).

Therefore,

_min
P1:D(Qx || Po)=4"

" A
arpolig((X;]z F (24

In addition, we upper bound the chi-squared distance as
follows

1

QP € ———=—IlQ — hll3 (242)
mingex Po(x)
1 ~
<— Q- Py? 243
T mingex Po(x) e olly (243)
4 ~
< —————D(Q| ), (244)

- minxex PO (J))

where we used Pinsker’s inequality [18] in the last step. Hence,

we have
4
max < - - . (245)
Q:D(Q|Po)=" mingex Po(x)

Finally, from (241), (245) we conclude (93). We can also
improve the chi-squared upper bound using the following f-
divergences inequality [33]

1

2(Q||Py) < —D(Q| P 246
where for € (1, 00)
_zlogr+1—x

and 0 = max,cx %. We need to find 3 such that for all

distribution Q satisfying the D(Q|Py) = 4" this inequality
holds. It is easy to show that x(x) is a non-increasing function
for z € (1,00). To show this we take the derivative of x(x),

di(z)  2(1—x)+ (v +1)logz
de (1—2)3 (248)
20 —z)+ (x+1)(z—1)
< TEEE (249)
1
= (250)
<0 (251)
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where we have used the inequality logz < z — 1. Therefore
for all D(Q| Py) = A"

1
EEr—)

For every « > 0 by the inequality zlogz > x — 1, for every
Q such that D(Q||Py) = A"we get

(252)

(@ Py) < D(Q||Py).

yh : Q(x)
P23 Rye) (- 1) (253)
a;( Po(z)
Therefore
Q(z)
max max —
QEP(X):D(Q| Po)=4" *€X Py(x)
= max max Q(x)
QXpen PO(I)(%*l)S,?h 2€X Py (x)
(254)
; +h . o
< min(1, 4" + mingex Po(z)) 055)

minxex PQ (J))

where in the last step we have dropped the Q € P(X)
condition and assigned all the mass to Q(Zmin) Where zmin =
argmin,_ y Py(z). Finally, substituting (255) into (252) we
get (91).

APPENDIX H
PROOF OF THEOREM 6

The proof described below holds in general and can be used
for continuous probability distributions. From the absolute
continuity assumption, let the log-likelihood ratio be bounded
by a positive constant c, i.e.,

‘1og{30—(x)

1T

<c¢ Vaz. (256)

We use the following results.

Theorem 12 ( [25]): Let S, = Y7, Z; be a random walk
where Z; is some non-lattice random variable' generated in
the i.i.d fashion with E[Z;] > 0. For v > 0, let

T=inf{n >1:8, >~} (257)

Also, let R, £ 9 — v. Then R, converges in distribution
to a random variable R with distribution @ as v — oo.
Moreover, if Z is lattice random variable, then I, has a
limiting distribution Q4 as v — oo through multiples of d.
The next result shows that under conditions (99), the mis-
matched sequential probability ratio test stops at a finite time.
Lemma 4: Let 7y be the smallest time that the mismatched
sequential probability ratio test crosses threshold 7y, i.e.,

fo=1inf{n >1:5, >4} (258)
Also, assume that conditions (99) hold. Then,
Po[7p > n] < edioe=(n=DEO) (259)

where E(0),d > 0. Also, as 59 — oo, 79 — oo almost surely.

'A random variable Z is said to be lattice if and only if >3 Pr[Z =
a+kd] = 1 for some non-negative a, d. Otherwise, it is said to be non-lattice.
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Proof: By Chernoff bound [19], the probability of passing
the threshold under the first hypothesis at a time after n can
be upper bounded by

P[0 > n] < Po[Sn-1 < o] (260)
n—1 ~
Po(z:) .
=P log = < 261
ol; gpl(xi)_vo] (261)
< e~ n-0B(3), (262)
where
E(y) = sup{ = 57 = (s) } (263)
s>0
and .
. Py
k(s) =logEp, | = |, (264)
I8

is the cumulant function of the mismatched log-likelihood
ratio. Note that for each s the objective function in (263) is
linear in ~y, so E(+y) is the pointwise supremum of a family of
linear functions, hence convex [26]. By the convexity of F(v)
we have the following lower bound

E( Yo

n—1

OE(v)
oy

o
n—
=0

) > E(0) + (265)

In order to show that F(0) > 0 it suffices to show that &'(s =
0) < 0. Taking derivative of A(s) respect to s and setting

s = 0, we have
Py
log —
&)

= D(P,||Py) — D(P1|| ) < 0,

i(0) =Ep, (266)

(267)

where the last step is by the assumption in (99). Finally, by the
envelope theorem [30] we get

9E(v)

5y (268)

= _S*(’V = O)a
~=0

where s*(y = 0) is the optimizing value of s in (263) eval-
uated when v = 0. (Note that this value is unique since
k(s) is strictly convex in s [19]). By the constraint of the
optimization problem in (263), we have s > 0. Also, from
R'(0) < 0, we get s*(y =0) # 0. Therefore, we conclude
that s*(y =0) > 0 and

9E(v) ‘
0y Ily=0

4

(269)

Finally, substituting (265) into (262) we get (259). Further-
more,

k A~
Po(x; .
Pol#o < n] < Py [Zlog (1) 5 50,k < n] (270)
= Dl
<P, [k:c > 40,k < n] 271)
< Po[ne > o) (272)
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Taking 49 > ne, then Py[7y < n] = 0. Therefore, as 49 — oo
then 75 — oo a.s. O

We now proceed with the proof of the Theorem. We show
the result for the type-II error probability; a similar proof
holds for the type-I case. The type-II probability of error of
mismatched sequential probability ratio test is

€ =Ep, []l{s'% > 4o}]
= EPO [675;.]1{327_ > ’?O}L
where S is the log-likelihood ratio under no mismatch in (26)
evaluated at the time where the mismatched test stops. Recall
the definition of 7y in (258) and R+, = S7, —%o. Observe that,
if 5S¢ > Ao, then we have 7 = 7. Multiplying the exponent
in (274) by

(273)
(274)

3 P
SAO and substituting 5, we get
70

& = Ep,[e~S1{5; > 30}] (275)
LN T
=Ep, e 0 " 1{8: = 40} (276)
—h(éa +90) A
= Ep, [e Se Y0 G 2%}] 277)
L Say A Sa N N
et p= =0, i = fo.ByLemma4,To—>ooas70—>oo

a.s., and therefore by the SLLN
2 D(Pol|Py),
ft & D(Po||Pr) — D(Pol| o).

(278)
(279)

Also, since i > 0 almost surely, by using the continuous
mapping theorem [34] we have
B Sk D(FR| )

L _ S ’ . (280)
f Sz D(Bl|P) — D(P| Fo)

Moreover, by Theorem 12, Rs, converges in distribution to
a random variable Ro with limiting distribution QO under Py
(through multiples of d in the lattice case). By the Slutsky’s
theorem [34],

Sz~ D(P|| P .
2 R, i) A( OH 1) _ RO; (281)
St D(Ry||P1) — D(Fo| Fo)
Writing (277) as
D(Py I Py) .
glemPouﬁl)O—D(Po ) 1°
5S40 1 5 N D(PyllP1) N
(282)
and letting 4y — oo, by Slutsky’s theorem we get
D(Py |l Py) . D(Py |l Py) A
lim épeb®o uﬁl)O—D(lPo o) 1° = Ep, [ef D(Py uPl)O—D(lPo uPo)RO}
Jo—00
(283)
= é1. (284)

To prove (102), we show the converges of 7y in probability
as well as its uniform integrability. Therefore, we can conclude
its convergence in L' norm (and hence in expectation). Finally,
from the convergence of 7, we obtain the convergence of 7.
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First, by the finiteness of 7 for every 4o and definition of 7y,
there exist a finite 7y with probability one such that

201 < A0 < &, wp.l. (285)

Also, let n = Zf where c is the log-likelihood ratio bound

in (256), we have

1°

P[ % — (D(PRy|| P1) — D(Ry || Po)) | > 5]
— 1}»[ SO — (D(Po||P1) — D(Ry|| By))| > €, 70 > n]
+P SO — (D(Ry|| Py) — D(Py|| Py)) | > €, 79 < n]
(286)
< ]P’[ U S (D(Pol|Pr) = D(Po[| Po)) | > E}
+P[i <] (287)

where P[7) < n| = 0 for the choice of n by Lemma 4. Now
by letting 49 — oo, and hence n — oo we get

lim Pl i — (D(Po|| Py) = D(Po|| Po)) | > 6]

Fo—00 70

< ]P’l D(Py|| ) — D(Po|| By)) | > 6]
- (288)

_o (289)

by the strong law of large numbers. Therefore, we have

i;‘) = D(Ro||Pr) = D(Py| By, (290)
Si—1 p . .
71 Pl = D(Bol| o). (291)
Therefore, by (285), (290), (291) we can conclude that
Do, ! (292)

Y D(Py||P) — D(Ry||By)

as 49 — Q.

To show the convergence in L' we only need to prove the
uniform integrability of the sequence of random variables %,
where 7y is a random variable that depends on the strictly
positive parameter 4y. Equivalently, for some ¢ > 0, we need

to show that,

lim sup Ep, T—O]I{T—O > t} =0.
=00 50> Y Y

(293)

We can upper bound the given expectation in (293) as
. 144 .
Ep, [Mn{ﬁ) > +tEp, []1{;0 > t}] .
70 7o

A B

[0l |

(294)
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The second term can be upper bounded by (259) as

B = tPo[7y > tAg] < teF @ =10 (E0)=d) (295)

The first expectation can be also written as the following sum

1 & R .
=— Y Polfo — [th0] > m)], (296)
m=1
and by (259)

A<

t —40(tE(0)—d) Z e~ (m=2)E(0) (297)

m=1

Yo

Hence A and B are vanishing as ¢t — oo for every 4o giving
the uniform integrability of %, and hence convergence in L'
[35], i.e,

70 1

Ahm EPO - — = =

Yo—0 Y0 D(P()H.Pl) —D(P()HP())

Finally, we prove the convergence of 7. By (100), (292) and
the union bound, we obtain

=0.

(298)

[ # 1 ]
Po||— — N N > €
Yo D(Ry||P1) — D(Ry||P)
SPO[;_ - ! - ZQGBZO]
%0 D(P[|Py) — D(Py[| Py)

+ Pyl = 1] (299)
% 1 A
=Po||z-— = —| > €| +é, (300

O[vo D(Po|| Pr) — D(Po| By) } o, G0

which tends to 0 as 49 — oo, establishing the convergence of
% in probability. Now, using that 7 < 7y we have

Ep, [;]1{; >t}| <Ep, [TOJI{T—O > t}] (301)
Y0 Y70 Yo Y70
Therefore, uniform integrability of 7y gives the uniform inte-

grability of 7, and hence convergence in L' norm and also
expectation of %, which concludes the proof.

APPENDIX I
PROOF OF THEOREM 7

Proof: Defining 71 similar to (258), we have

f=inf{n>1:8, <-4} (302)

The probability of making the right decision can be bounded
as

]}DO[QZ) =0] = O[S passes 4o before passing — 'Ayl} (303)
Szpo[f'@gn,f’l >n} (304)

n=1
(305)

< Z min {Po[f‘() < ’I’L],Po[f'l > n]}

=1
We can bound both terms similar to the proof of lemma 4 by

[ee]

}P’O[(i) =1]< Z min {efa%ean(O)’ e*a%ean(O)} (306)
n=1

= min {coe*“%, cre”n }, (307)
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where @ > 0, E(0) > 0 due to (104). Finally,

€0 > 1 — max {cle*“%, cze*“%} (308)

which goes to 1 as 4o, *1 approach infinity. O]

APPENDIX J
PROOF OF COROLLARY 1

Proof: Theorem 6 gives an asymptotic expression for the
error probability ¢; and expected stopping time Ep, [7] of the
mismatched sequential probability ratio test for i € {0,1} as
a function of thresholds. To find the largest error exponents
of the test as defined in (97) and (98) we should find the
largest thresholds 4g,%; such that they satisfy the expected
time condition since type-I and type-1I error exponents are
increasing function of 4g, 41 by (100), (101). It is easy to check
that thresholds in corollary are the largest thresholds satisfying
the expected stopping time conditions, which concludes the
proof. O

APPENDIX K
PROOF OF THEOREM 8

We show the result under hypothesis 0, and similar steps
are valid for hypothesis 1. Observe that (117) can be written
as

Ey = D(By||P1)

. {D@néo) D(P1]| Py) —D<P1|1?1>}. (309)
D(By||Pr)" D(Py|| 1) — D(Fo|| Py)

From (119) and (309), we need to compute two minimizations,
the first of which over F. To this end, we exchange the order
of these minimizations and apply a Taylor series expansion to
the first term of (309) around Py = ]50, P = ]51 we obtain

By =

(DBl Py) + d 0, + dT O, + o(0r, = + 105, ]1) )
5 b > > _ T

i {D<P1||Po> DRI (; , (da = pod)"6r,

D(Ro||Pr)’ D(Po|[74) D(Pi]|Po)
dlep,
i . R 0p, |00 + 1105, |0 310
Drry T enls + 18] >)} (310)

= D(P1|| Py) +min { pod] O, + pod] O, d5 01, }
+ o(|[0r, [|oc + (0P, [|c), (311)
where for ¢ =0, 1,

Hpi = (H($1) — Pz(xl),,ﬂ(x‘ﬂ) —pi(x‘;q))T, (312)

A 5 T
do = (1+10g B@) 40 1?0(”“)> . (313
1 (2 Py (1)
dy = (_ Po(1) . _Po(a?pc))T (314)
(1) Pilay)/)
; 5 T
d2—<1+bg5”“% ,1+bg5@m> + pods,
(1) 0(1)
(315)
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_ D(PiR)
and po = 5B

(119) we obtain

. By substituting expansion (311) into

: T T
min  dy0p, +di0p,
PyeB(Po,ro)

Py eB(P1,r1)

dT0p, |+ o((|0n,|oo + 1071 )-

Ey(ro) = D(Py]| Py) + min { po

min
PyeB(Po,ro)
PieB(Py,r1)

(316)

Now, we further approximate the outer minimization constraint
in (119), or, equivalently, the minimizations over the diver-
gence balls in (316) to get

Ey(ro) = D(P1[|Py) + min { po

min  d}0p, +dl6p,,

PyeB(Po,ro)
PreB(Pr,m1)

min
PoeB(Po,r0)

dzTepl} + o(|[0r, [|oc + (0P, [|c)-
PeB(Pyr)

(317)
where
B(P;,r;)=1{0; € RI* : 0], 7,05, <2r;, 1705, =0}. (318)

and

J; = diag ( _ (319)

)

Pi(z) Pilayx)
is the Fisher information matrix corresponding to hypothesis
i. Next by optimizing over /% and P; and similarly to the
proof of Theorem 3, by substituting P; with P; we get (120).

APPENDIX L
PROOF OF THEOREM 9
Assume Q fixed. Let
EO(Q; T) = mlr}
Q:d(Q,Q)<r

To derive the Taylor expansion of the optimization we expand
the d(Q, Q) and D(Q||Pp) around Q = @ to get

EO(Q; T) =

D(Q| Fo). (320)

min D(Q||P0)+9£VE0+O(H9Q||oo)
Q:%GEJ(Q)GQST
1T9@:o
(321)
where
Q(z1) Q($|X)>T
FEo=|(1+1 o1+ log ——~ 322
\Y 0 ( + og PQ($1)7 ) + og PO(£‘X|) ) ( )
05 = (Qz1) — Qa1).....Qz1x) — Qlziay) . (323)
sz'g(Aa " ) (324)
RGN MoTE

Solving this convex optimization, we obtain

E,(Q,r)=D(Q| Py)— \/%Varé(log P%)r—i—o(\/?). (325)
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Next, minimizing over ) we have

\/%Varé) (log I;Q)r-i-o(\/?_“)

Ey(r)= min D(Q|Fy) —

QeQy 0
(326)
We can expand £, around r = 0 as
. ) oFE
Bo(r) = By =0)+ 22000} o). a2)
oT 0
r=
By the envelope theorem [30], we have that
OE,(r) - \/2 Qx
NG ) = — aVarQA (log Fo)’ (328)

where we used the fact that Q = Q when r = 0, where @
is the optimizing distribution in (11). Finally, setting E,(r =
0) = Ejy, concludes the proof.

APPENDIX M
PROOF OF COROLLARY 3

We prove the result for ¢ = 0, and the same holds for the
type-II sensitivity. We can write the sensitivity of type-I error
exponent to sample mismatch as

06" Qx(a) )
d aez;cp log (Po(a)> —D*(QxllRy). (329

For every z > 0, we can show the following inequality
zlog?z < (x —1)% (330)

Using this we have

657 <>" Py (a) < Z

aceX
To prove the inequality let fi(z) =
the second derivative we have

logz 1
1 :2(1— ——)>0
1(1‘) T T — Y

2
1) =x3(Qx||Po) =65,  (331)

(x—1)2—zlog? x. Taking

(332)

where we used logz < x — 1. Hence fi(x) is convex and the
first order condition is sufficient to find the minimum of f;(x).
Setting * = 1 we get f1(1) = 0, f{(1) = 0 and therefore
fi(z) =0

To prove the lower bound, for every x > 0 we have

z—1<zlogx. (333)
Applying this inequality to (329) we get
egdv
-1 2
> Y Py ‘” D) 1) poyry)
= (a) Py(a)
(334)
Bo(@) \ paise _ 0
> | min ~ 165" — EF, 335
> ( in 5 w) dist — B3 (335)

which concludes the proof.
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APPENDIX N
PROOF OF THEOREM 10
We show the result under the first hypothesis; similar steps
are valid for the second hypothesis. Unlike the likelihood ratio
test, we first consider the minimization over P, for a fixed
@ and we perform a Taylor expansion of D(Q|/Fp) around

Q= Q@ to get
EO(T) =

. min D(Q||Po) + 65V Eo + o(]|6¢ ),
Q.Q:D(Q||Po)=~

d(Q,Q)<r

(336)
where
Q(x1) Q($|X))T

VEy=(1+1 .., 1 +log ——= 337
0 ( + OgPO(JJ)’ ) + OgPQ( | |) ) ( )
00 = (Qz1) — Qa1). ... Qz12)) — Qlwiap) - (338)

We have replaced the inequality constraint with equality since
the the optimal value of the minimization will be attained at the
boundary. Next, by solving (336) over @ for fixed @), we get

. . . 2 QX)
Ey(r)=_min  D(Q|Fy) — | —Varg | log r
O (@l P = a @ R(X)
+o(y/T) (339)
2 QX)
=y—  max —Varg | log r+o(\/T).
ep@ry=y\ @ | R(X)
(340)
Similarly for the type-II error exponent, we have
- . . 2 QX)
E,(r)=min  D(Q|P)— ,| =Varg | log T
el <y a 9T AX)
+ o(v/7). (341)

Next, by the envelope theorem [30] and similarly to the proof
of Theorem 9 we get (146).

APPENDIX O
PROOF OF THEOREM 11

Assume samples are drawn by Py. First, we find a bound
to the probability of error as a function of the threshold. The
type-I probability of error of sequential probability ratio test
under disturbed samples T; can be upper bounded by

€o

<3P o [HD(T | Po) = D(TL|P) 2 A0, Ty € BTz, ).

(342)
By the method of types we have
(o]
€0 < Z Z e~ tD(QllPo) (343)
t=1 QEQ"’Q (t)
Q:d(Q,Q)<r
(o]
<>+ 1) emEn (344)
t=1
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where
9,(t) = {Q: DQIR)

E (rit)=t min min
QEQ, (1) Q:d(Q,Q)<r

IX\+2

—DQIP) = 7}, (345)
D(@Q|| Fo)- (346)

Let 1 = 71 + log(t + 1), where Aj is the optimal
Lagrange mu1t1pher corresponding to the constraint in (345)
of optimization in (346) when v = ;. We expand E-, (r,t)
around 77 = 7;. Similarly to Lemma 3 it can be shown that
E_ (r,t) is convex in 7, hence

OFE._ (rt) | X+ 2
E- >F X log(t +1).
By, (1) 2 E,, () + =5 T los(t+ 1)
=71
(347)
By the envelope theorem we have
OE_(r,t)
—— =\ >0. 348
8'}/ 1 = ( )
Y=71
Furthermore, the inequality is strict if 2t > —D(FP|Py),

hence by choosing y; > 0 for every ¢ this condition is satisfied.
Hence we can upper bound (343) by

Z t4+1)"2e En () (349)
< % 7m1nt>1 E, (r t) (350)
Next, by Taylor expanding £, (,t), we have
oL, (r,1)
B, (rt) =B, (r=0,t) + —3 =] Vrto(Wn.
r=0,t
(351)

Also, using (328) in the proof of theorem 9, we get
OE. (rt)

2 Q)
NG =—1 aVaer)<log P | (352)

where ;) is the optimizing distribution in (11) for the case
where v = 3 in (9). Let

r=0,t

E, (r)= g?ﬂw (r,t). (353)
Taking derivatives respect to /7 we have
dE, (r) _OE, (rt*(r)) OE, (r,t"(r)) dt*(r)
dyr oT ot*(r) dyr
(354)
where t*(r) is the minimizing ¢ in (353) as the function of 7.
By the first order condition % =0, we get
dE_ (r oOE , (r,t*(r
£,(1) _ 0B, (1) 535
NG NG
hence
dE_ (r OE., (r,t*(r
—dz% ) = _71;\/_ () (356)
" r=0 " r=0,t*(r=0)
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To find the t*(r = 0), note that D(Q||P1) > 0, hence
E, (r=0,)= min D(Q||Py) (357)
Q:D(Q||Py)>TL-+D(Q|| P1)
> 7. (358)

Letting v1 = nD(Py||Py), t = n will achieve this minimum.
Additionally, ¢*(r = 0) = n is the unique solution. To see this
we can write the optimization in (357) in the dual form as

E (r=0,t)= max’yl)\ —tlog ( Z P )Pf\(x))
TeEX
(359)

Since E (r = 0,t) is the supremum of linear functions in
t, therefore it is convex in t. Also by the envelope theorem,
we have

OF =0,t
7_M (;t —log ( Z PO1 A

zeX

PY (@), (360)

and setting this to zero, we can conclude that first order
condition only satisfies if A = 0 or A = 1, i.e., Qx = Py or
@ = P should be the optimizer in (357), and it is clear
that only 2t = D(P;[|Py) can satisfy this condition which
shows the uniqueness of the solution. Then by (352), (356)
and substituting ¢*(r = 0) = n, we obtain that

d_E (T) 2 P1
Y1 Y/
—_— = = — - 1 — .
(I\/F " « arPl ( o8 PO)

Also, we have

(361)

E, (r=0)=E, (r=0,t(r=0)) =nD(P|P). (362)

’Yl(

Finally, By (361), (362) and Taylor expanding £, (r) around
r = 0 as the function of /7, we get

n (D(p1 1Po)—1/ 2 Varp, (log %)r)

e <c-e , (363)

where c¢ is a positive constant. Next, we find the worst-
case expected stopping time Ep, [7], Ep, [Z]. We can write the
accumulated log-likelihood ratio S,, evaluated at adversarial
samples with the type 77, by

Sn _ Sn +67 VS, (364)
n n x
where
A Py(z1) P($|X))T
vé=(1 . 365
(%am> Pr(72) (569
07, = (Th(e1)~Tulz1), ..., Th(ia) ~Tu(zx) ", (366)

and T}, is the type of the original samples at time n. Assume
T, is fixed and the adversary is trying to maximize the
stopping time, or equivalently reducing the S,, under the first
hypothesis. Therefore, letting Sn = Ming.7 o)<, S, we
have

J:&—i— min OT vS

_ min (367)
Qud(Tw,Q)<r '@
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Note that, this is a convex optimization problem, and similarly
to the proof of Theorem 9 we get

2 P,
= == — | =Varg | log 2+ o(\/1). (368)
a Py

Let

o =inf{n>1:8, >}, (369)
to be the worst-case stopping time under the adversarial
perturbation. Similarly to proof of the Theorem 8, it is easy
to show that the worst case stopping time 7, tends to infinity

as o — 00, and also for every finite 7, the stopping time is

X
| /\‘;2 log(t 4+ 1)

where A3 is the optimal Lagrange multiplier defined similarly
to A} for the type-II error exponent. By SLLN and continuous
mapping theorem as vy — oo we have

finite with probability one. Let 79 = 7o +

S;— 2 P,
f:)() 2, D(Py||Py) — EVarp0 log F(l) r+o(\/Tr),
(370)
S. _ 2 P
ol 2, D(Po||P) — | =Varp, | log = |7 + (/7).
—1 « P1

(371)

It is easy to show that there exist a finite 7, with probability
one such that

§i0—1 < < §io with probability 1. (372)

Therefore, from (370), (371), and (372), we conclude that

-1

T 2 P
Io 2, D(Py||P) — EVarp0 logFO r+o(vr)|
1
(373)
as yp — OoQ.

Similarly to the proof of Theorem 8 we can show the con-
vergence in expectation by proving the uniform integrability

of % as o — oo as well as convergence of f—o by using the

convergence of % Hence
o 'yo\/éVarpO(log %’)r
Ep 7] = +
»E = Dm B DBy P)
+0(1) + o(\/7), (374)
- 'yl\/%Varp1 (1og %)r
Ep, [£] = +
A DEAIES
+ 0(1) + o(\/7), (375)
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Finally letting v = TZD(PQle),’Yl = nD(P1HP0) we

get
\/%Varp()(log%))r

Ep,[7] = n+ DBIPY) n+o(1)+o(v/r),  (376)
|2V, (108 5

Ep, [#] = n+ AL n+o(l)+o(vr), (377

and using (363) the worst case error exponent will
satisfy

Ey(r)Ey(r) = D(R||P1)D(Py | Fo)
2\/%Varp0(10g 2)r 2\/%Varp1(10g )
D(B||P1) D(Py | Po)

x |1

+o(V/r),

which concludes the proof.

(378)
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