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Abstract—We introduce a general class-based block source
coding framework which, for the case of discrete memoryless
soureces, is specialized to four different constructions with varying
levels of underlying structure in the class definitions. For all the
constructions, we show that the matched random coding error
exponent is achieved universally with a corresponding universal
decoder. Increasing the structure in the classes results in a simpler
corresponding universal decoder.

I. INTRODUCTION

Lossless source coding has been studied in three main
different settings. The setting that has been studied most
extensively is strictly-lossless variable-length prefix data com-
pression. In this setting, a source code is an injective map-
ping of source sequences of fixed-length n to variable-length
binary codewords where no codeword is a prefix of another
(see e.g. [1]). In the second setting, the prefix constraint is
dropped when a whole file is to be compressed at once, while
retaining strictly-lossless, variable-length codes. An optimal
code in this setting is a deterministic mapping of length-
n source sequences ordered with decreasing probability to
binary sequences of increasing length. A rigorous treatment
of the optimal code in this setting for the known distribution
case and universal case can be found in [2], [3]. The third
and last setting is almost-lossless, fixed-length to fixed-length
data compression which we refer to in this paper as block
source coding. The optimal n-to-k code in this setting maps
2% — 1 most likely sequences to distinct codewords and maps
all the remaining ones to the last codeword (error index). The
analysis of optimal code for a discrete memoryless source
(DMS) shows the exponential decay of the error probability
with the optimal exponent given by [4]

E(R) = max pR — Es(p) (D
p=0

where

1+p
E(p) = log (Z Pv(v)liﬂ> : 2

veV

When the distribution of a DMS is unknown, an optimal
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universal code can be constructed by one-to-one mapping the
lowest empirical entropy sequences instead of the most likely
ones [1]. Using this construction, the optimal exponent can be
achieved universally [5], [6]. The literature on variable-length
universal source coding is extensive (see e.g. [7] and references
therein). Practical block-code designs have been considered in
a number of works, see e.g. [8], [9]. In this paper, we introduce
a general class-based block source coding framework, in
analogy with channel coding, where source sequences are
partitioned into disjoint classes, and each class is encoded
independently. For DMSs, we specialize the framework to four
code constructions, depending on the structure imposed on
the code. We show that the random coding error exponent is
universally achievable in all four cases.

A. Class-Based Block Source Coding

Consider a discrete source with finite alphabet ) that out-
puts sequences of length n, V' = Vj, ..., V,,, with probability
distribution Py, and realization denoted by v = vy,...,v,.

We partition the source-message set V" into N,, disjoint
subsets (classes) A, i =1,..., N,, with U?]:"1 A =V". We
let the partitions be such that, for each n, source sequences
are assigned to classes depending on a common property: for
example having same empirical type.

The codeword set M = {1,---,M} is also partitioned
into N,, disjoint subsets as {M;,--- , My, } where M; is
the codeword set for the class A?. A class-based block source
code C = {Cy, -+ ,Cn, } is a union of N,, codes where each
C; is an (n, R;) block code for source class A7 with mapping
function ¢; : A — M, and rate R; = % Each code
C; can be represented as a partitioning of the corresponding
class A? into M; = | M| subsets as {A;1,- -+, Ain, }-

The decoder for a class-based code C is a set of mappings
P M; — A% forevery i € {1,---, N,,}. We consider using
a maximum metric decoder as follows: for every m € M;

Yi(m) = q(v), 3)

arg max
veEAM:¢;(v)=m
where ¢(v) is a positive decoding metric. For a sequence v €
AP, the decoder makes an error whenever ;(¢;(v)) # wv.
For a class-based code, an error can only happen between
the source sequences of the same class. Here we consider the
average probability of error as the metric of interest.



Definition 1. A Class-based random coding ensemble is the
set of all (n, R) block codes for the source sequences V" with
a probability measure over the codes having the following
property: For every source class A?, i € {1,--- ,N,}, each
source sequence v € A} is independently assigned with equal
probability Ni[q to each of the codewords in M.

B. Discrete Memoryless Sources

Following conventional definitions, the type of a sequence
v generated by a DMS is the probability distribution P, with
P,(v) = "”T(”) for any v € V where n,(v) is the number
of appearances of symbol v in v. The type class {v € V" :
Py = P,} is denoted by T,,(P,). The set of all possible types
of sequences v € V" is denoted by P, (V).

We consider and study four different partitionings of the

source n-tuples V" to classes as follows:
1) Type class: A? = T,,(P;) forie {1, PV}

2) Empirical entropy class: A} = J; Tn(F)) : H (P;) =
H, fori e {1,---, N,}, where H,;’s are distinct empir-
ical entropy levels for source n-tuples.

3) Tilted family class: A? = U, To(P)) : P; € &g,
where &g, are distinct tilted families (Definition 2) for
empirical distributions of source n-tuples.

4) Single class: A™ = V™.

For each of the four cases, we consider class-based block

source codes with corresponding universal decoding metrics:

e For 1) and 2), ¢(v) is an arbitrary decoding metric,

« For 3), we consider q(v) = Q; for v € A" where Q; is
an arbitrary distribution from the tilted family &£q,,

o For 4), we consider the empirical probability metric
q(v) = e ™H(P») = P (v). Such a maximum metric
decoder is equivalent to a minimum empirical entropy
decoder, the source coding counterpart of the maximum
mutual information decoder for channel coding [6].

II. MAIN RESULT

Our main result is an achievable error exponent for class-
based ensembles. First, we give the random coding error
exponent for the ensemble of standard random block codes, a
special case of class-based random coding with a single class.
Considering a matched maximum likelihood (ML) decoder,
which minimizes the average error probability, the random
coding exponent for standard ensemble has a similar form to
(1) where the maximization is over p € [0, 1],

E.(R) = max pR — Eq(p). @)
p€[0,1]
Theorem 1. For discrete memoryless sources and each of the
four above-mentioned class-based partitionings, there exists
a class-based (n, R) block source code with M = [e"!]
codewords such that a maximum metric decoder with universal
metric q(v) achieves the random coding exponent in (4).

Next, we give bounds on the average error probability of
a random code with generic decoding metrics that we later
particularize to the four ensemble-decoder pairs above.

A. Random Coding Error Probability Analysis

A random code from the class-based ensemble is denoted by
C = {Cy,---,Cy, } with encoding functions {®;}". Over
the ensemble of random class-based codes, the average error
probability of a source sequence v € A]* can be written as

Pe(v,C) =E |1 U {a(v) = q(v), ®i(v) = @;(v)}

v#V
veAY
(5)
< ) 1g(v) > q(v)|P[®i(v) = 2;(v)],  (6)
BEAY
1 _
< — > 1|q@)e!™® > qv)e! |, 7
w ol |
1 g(v)e! ™\
SMU;@(M@M) ’ ®

where we use the union bound in (6), in (7) f(-) is any
arbitrary function that has same value for all the sequences in
the same class and possibly different values for the sequences
of different classes, and (8) holds for any s; > 0. We note that
the ratio % = 1 in (8), however the function f(-) will be
an extra degree of optimization after simplifying the bound.

Averaging over all source sequences yields an upper bound
on the ensemble average error probability,

Nn

where

pe(C) < Y Py(v)

vEA?

and (10) holds for any p; € [0,1].
The average error probability p.(C) in (9) can be further
upper bounded as

pe(c) <N, maxpe(ci)7 (11)

which implies that the corresponding error exponent is domi-
nated by the exponent of the worst class as long as [V,, grows
sub-exponentially with n.

In order to find a simpler bound on p.(C) that does not
require maximization over the classes, we first weaken the
bound in (10) by including all v in the inner sum and choose
M,; = ]{% and fix s; = s and p; = p, hence we obtain

N, g(@)e/@\"\"
pe(C) < Z Py (v) (M 72 (q(v)ef(”)) ) , (12)
veyn BeEVT
for any s > 0 and p € [0,1]. The bound in (12) can be
optimized over the choice of f(-) which only needs to satisfy
f(v) =, for all v € A? where ~; is a constant for every i.



III. PROOF OF THEOREM 1

We now prove the achievability of the random coding
exponent with matched decoding for discrete memoryless
sources with each of the four class-based block source codings
introduced in section I-B with a corresponding universal
decoder for each case.

A. Type Class

In this case, each source type class is considered as a
separate class, hence, N,, = |P,(V)| and f(v) in (12) can
be any arbitrary function that depend on the source sequence
v only through its type.

Now setting s = fp, f(v) =log ¥ (v) in (12) and using
memoryless property of the source we obtain

pe(C)(|P ><ZP 1+a>1+p (13)

veY
—n(p(R—0n)—Es(p)) (14)

=e
where 6, = P00 a5 n — oo and Eq(p) is
given in (2). This shows that for discrete memoryless sources,
type class-based source coding achieves the matched random
coding error exponent universally irrespective of the decoding
metric since the choice of function f(v) = log (;?(1)’) cancels
the effect of decoding metric.

B. Empirical Entropy Class

In this case, all the source type classes with equal empirical
entropy are partitioned together into a single class, hence,
the number of separate classes [N,, is equal to the number
of distinct empirical entropy levels. Denoting the maximum
number of types within an equal empirical entropy class by
K, we consider simple upper bounds of K, < |P,(V)| and
N, < |P,(V)| in the following.

For a source sequence v and probability distribution Py (-)
define

B(v) ={v €V": Py(v) = Pv(v)}. (15)
For any source sequence v € A} we define the set
A(v) = {v € A} : q(v) > q(v)}, (16)

which are the set of sequences that would cause error if they
were assigned to the same codeword. Noting that for any
arbitrary metric ¢(-) we have |A(v)| < |A?| for v € A? and
since types with equal empirical entropy have type classes with

equal size and also since B(v) includes type class 7, (P), we
upper bound the size of A(v) as
[A(v)| < Ka|B(v)]. (17

Now we upper bound the average error probability of a
source sequence v € A7 using (6) as

Pe(v,Ci) < |AA(;:)|, (18)
K,N, Py(v)\°
S s (e w

where we use (17) and the bound 1 [Py (v) > Py (v)] <
(P"(”)) for s > 0.

Py (v)
Now averaging over all source sequences we obtain

KN, Py@\*\"
<2 vl ( MWQ%M))’Qm

veyn
which holds for any p € [0, 1].

Now setting s = ﬁ in (20) and using memoryless
property of the source we obtain a similar bound as (14)
with 6, = logK No < 21°g|7)"(v)| — 0 as n — oo. This
shows that for dlscrete memoryless sources, empirical entropy
class-based source coding achieves the matched exponent
universally irrespective of the decoding metric. This is because
the bound in (17) is valid regardless of the decoding metric.

C. Tilted Family Class

We start by defining the tilted family and state a lemma that
will be used to prove the result for tilted family class.

Definition 2. For a probability distribution @) with support V),
the tilted family of Q is defined as

&g = {Q¥ : s e R},

where Q) is the tilted distribution of order s of Q and for
every v € V it is given by

Q) = o
veV

The tilted family £¢ is an exponential family of probability
distributions written as

g}g) (v) = ce®l )

log Qv (v) and ¢ = ( > eSf(v))
v

family £g depends on @ only in a weak manner, since any
element of £ could play the role of Q).

For tilted family class case, all the source type classes
having same tilted family are grouped together into a single
class, hence, the number of separate classes [V,, is equal to
the number of distinct tilted families of empirical distributions
on source n-tuples. We consider a simple upper bound of
N,, < |P,(V)| in the following.

For the ¢-th tilted family class A}, we consider the uni-
versal decoding metric q(v) = @Q; where Q; is an arbitrary
distribution from the corresponding tilted family £q,. For any
source sequence v € A7 we define the set

A(w) = {v € A?: Qi(v) > Qi(v)}.

Considering the definition of B(v) in (15), we have the
following inequality on the size of the sets .A(v) and B(v).

where f(v) = ~!. The tilted

2y

Lemma 1. For any source sequence v from tilted family class

AP, we have )
|A(v)] < [B(v)] (22)



B:(0,1,0)

C:(0,0,1)

Fig. 1: Ternary simplex and illustration of permuted tilted
families, iso-cross-entropy families and iso-entropy contours.

for any arbitrary probability distribution Py in definition of
B(v) in (15).

The full proof of Lemma 1 is involved and omitted here.
We only provide an sketch of the proof through an illustrative
ternary example in the following.

Fig. 1 shows the ternary simplex with iso-entropy contours.
Assume that solid red curve connecting the corner point A
to the center of the simplex U (uniform distribution) shows
the tilted family £p,, of the (arbitrary) distribution Py in the
definition of B(v).

As first case consider a sequence v such that the empirical
type P, belongs to the tilted family £p,,. The black circle on
the figure illustrates one such type. The set fl(v) is union of
all the type classes with empirical type on the portion of titled
family curve between the corner point A and P,. The solid red
line passing through P, shows the iso-cross-entropy family
Mp, = {P: H(P||P,) = H(P,)}. The iso-cross-entropy
families corresponding to other distributions from tilted family
Ep, are parallel lines to Mp . The set B(v) is union of all
the type classes with empirical type over the triangle formed
by the vertex A and the solid red line as opposite side which
includes the /I('u) as a subset. Notice that in this case we can
also replace @; with Py in (21) and show that A(v) C B(v).

As second case consider a sequence v such that the empir-
ical type P, belongs to the same region of the simplex as Py
according to ordering of symbol probabilities. The blue dot
on the figure illustrates one such type. The set /i(v) is union
of all the type classes on the portion of titled family curve
(dashed blue curve) between the corner point A and the blue
dot. The iso-cross-entropy family for a tilted distribution P‘(/S)
passing through P, (blue dot), namely M (), is shown by

dashed red line. The set B(v) is union of all the type classes
with empirical type over the triangle formed by the vertex A

and the dashed red line (passing through blue dot) as opposite
side which includes the .A(v) as a subset.

For the last case, consider a sequence v such that the
empirical type P, belongs to a different region of the simplex
than Py,. The magenta squares on the figure illustrate such
types. The set A(v) is union of all the type classes on the
portion of titled family curve (dotted magenta curve) between
the corresponding corner point and the magenta square. For
any such v there is a permutation of P, and corresponding
tilted family &5 denoted by 7(P,) and &, (p,)» Tespectively,
that are on the same region of the simplex as Py . The dashed
blue curve is the corresponding permutation of dotted magenta
curves. We first note that since any type class lying on a dotted
magenta curve has a corresponding permuted type class on
the dashed blue curve, therefore, |A(v)| = |.A(®)| for any
© € T, (n(P,)). Therefore using the result of the second case
we have |A(v)| < |[B(v)|. The set B(v) is union of all the
type classes with empirical type over the triangle formed by
the vertex A and the dashed red line (the iso-cross-entropy
family passing through P,) as opposite side. Also note that
Py (%) > Py(v) since (P,) has similar ordering to Py
whilst P, has different ordering, therefore B(%) C B(v).

Using Lemma 1 we upper bound the average error proba-
bility of a source sequence v € A7 from (6) as

|A(v)|

Pe(v, Ci) < =, (23)
N, Pv(@) s
stGZW< Pv(v)> : (24)

where the (24) holds for any arbitrary probability distribution,
especially for the matched distribution Py .

Averaging over all source sequences and using memoryless
property of the source we obtain a similar bound as (14) with
Op = IognN" < log\']jl”(]})\ — 0 asn — oo.

This shows that for discrete memoryless sources, tilted
family class-based random coding achieves the matched ran-
dom coding error exponent universally with corresponding
universal decoding metric.

D. Single Class

In this case we consider a universal decoding metric given
by q(v) = 27"H(P») — P (v) which is the empirical
probability of the sequence v. For any sequence v, we define
the set fi(v) as the set of sequences v € V" that would cause
error if they were assigned to the same codeword, namely
for such sequences we have Py (@) > P,(v), or equivalently

H(Py) < H(P,), ie.,
A(w) ={o e V": H(Py) < H(P,)}. (25)

Noting that a type with lower empirical entropy, has a
smaller type class and also since B(v) includes type class
Tn(P,), we upper bound the cardinality of the set A(v) as

[A(v)] < [PR(V)IIB(v)]- (26)



Using (26) we upper bound the average error probability of
a source sequence v € V" from (6) as

5ol C) < AL @)
PV~ (Pr@)
AP () @

BEYn

Averaging over all source sequences and using memoryless
property of the source we obtain a similar bound as (14) with
5n:W%Oasn%o&

This shows that for discrete memoryless sources, single
class block source coding with universal maximum empirical
probability decoding (minimum empirical entropy decoding)
achieves the matched random coding error exponent.
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