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Abstract—This paper provides a dual domain derivation of the
error exponent of maximum mutual information (MMI) decoding
with constant composition codes, showing it coincides with that of
maximum likelihood decoding for discrete memoryless channels.
The analysis is further extended to joint source-channel coding,
demonstrating that the generalized MMI decoder achieves the
same random coding error exponent as the maximum a posteriori
decoder.

I. INTRODUCTION

The random coding error exponent is defined as the asymp-
totic limit of the negative normalized logarithm of the expected
error probability, given by

Er(R) ≜ lim
n→∞

− 1

n
log p̄e, (1)

where R is the coding rate, and p̄e denotes the average error
probability over all codebooks in the ensemble.

When messages are equiprobable, Csiszár and Körner [1,
Theorem 10.2] (see also Gallager [2, Section 6]) showed that,
for discrete memoryless channels (DMCs) and under constant-
composition coding, the maximum mutual information (MMI)
decoder achieves the same random coding error exponent as
the maximum likelihood (ML) decoder. The MMI decoder
is a suboptimal mismatched decoder that does not know the
channel transition probability and yet attains the same error
exponent as ML decoding. This notion of optimality with
respect to the random coding error exponent is commonly
termed as universality.

Csiszár and Körner’s expression results in the minimization
over joint distributions subject to specific constraints. These
expressions are typically referred to as primal domain, and
are typically obtained using the method of types [1, Chap-
ter 2]. Instead, dual expressions are commonly formulated as
maximizations over auxiliary parameters, with key approaches
for deriving random coding bounds in the dual domain being
those of Gallager [3, Section 5.6] and Poltyrev [4]. A dual-
domain derivation offers notable advantages, such as enabling
achievable exponents to be obtained for any parameter choice
and providing a natural extension to arbitrary alphabets.
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Existing results of the MMI decoder have been limited to the
primal domain, as its multi-letter nature makes a dual-domain
analysis difficult. In this work, we revisit the universality of the
MMI decoder in channel coding by deriving its random coding
error exponent in the dual domain. We then extend our analysis
to joint source-channel coding (JSCC), where messages are
not equiprobable, by addressing the generalized MMI decoder
introduced by Csiszár [5]. To the best of our knowledge, such
dual-domain derivations for the MMI decoder have not been
previously appeared in the literature.

II. NOTATIONS

In this paper, scalar random variables are denoted by up-
percase letters, their sample values by lowercase letters, and
their alphabets by calligraphic letters. Random vectors are
represented in boldface. For two positive sequences fn and
gn, we write fn

.
= gn if limn→∞

1
n log fn

gn
= 0, and we write

fn ≤̇ gn if lim supn→∞
1
n log fn

gn
≤ 0.

The type of a sequence x = (x1, . . . , xn) ∈ Xn is its
empirical distribution, defined by

P̂x(x) ≜
1

n

n∑
i=1

1 {xi = x} . (2)

Similarly, the joint type and conditional types of a pair of
sequences are denoted by P̂xy , P̂y|x, and P̂x|y , and are defined
in an analogous manner. Throughout this paper, we use P̂x(x)
for convenience to represent P̂x(x) =

∏n
i=1 P̂x(xi). Observe

that P̂x(x) = exp(−nH(P̂x)), where H(P ) represents the
entropy of the distribution P . The set of all probability
distributions on an alphabet X is denoted by P(X ), while
Pn(X ) represents the set of empirical distributions (types) for
vectors in Xn. It is shown in [1, Lemma 2.2] that the total
number of types grows polynomially with n, which implies
|Pn(X )| .

= 1. For PX ∈ Pn(X ), the type class T n(PX)
consists of all sequences in Xn with type PX . It is shown
in [1, Lemma 2.3] that |T n(PX)| .

= exp(nH(PX)). Under
the constant-composition random coding ensemble with input
distribution QX , the codewords are independently drawn from
the codeword distribution

PX(x) =
1

|T n(QX)|
1 {x ∈ T n(QX)} . (3)



III. CHANNEL CODING

We study communication over a DMC W . A codebook Cn
consists of M codewords Cn = {x(1), . . . ,x(M)}, where
each codeword x(m) ∈ Xn for m ∈ {1, . . . ,M}. The code
rate R is defined as R = 1

n logM , measured in nats per
channel use. A message m is selected equiprobably from
{1, . . . ,M}, and the corresponding codeword x(m) is sent
through the channel. The channel produces an output sequence
y = (y1, . . . , yn) ∈ Yn based on the conditional probability
Wn(y|x) =

∏n
i=1 W (yi|xi). In [1, Chapter 10], Csiszár and

Körner used the method of types [1, Chapter 2] to show that the
MMI decoder achieves the same random coding error exponent
as the ML decoder. In this section, we redrive this result in
the dual domain.

Given the channel output y, the MMI decoder selects the
message m̂ that maximizes the mutual information induced by
the joint type between y and each of the codewords,

m̂ = argmax
m∈{1,...,M}

I(P̂x(m)y), (4)

where P̂x(m)y denotes the joint type of x(m) and y. This
decoder is equivalent to selecting the message that maximizes
the conditional type. To see this, observe that

argmax
m∈{1,...,M}

I(P̂x(m)y)

= argmax
m∈{1,...,M}

exp
(
nI(P̂x(m)y)

) (5)

= argmax
m∈{1,...,M}

exp
(
n
[
H(P̂y)−H(P̂y|x(m))

])
(6)

= argmax
m∈{1,...,M}

exp
(
−nH(P̂y|x(m))

)
. (7)

The equality in (7) follows from the fact that H(P̂y) acts as
a constant here, as it does not depend on m. Furthermore, the
conditional entropy H(P̂y|x(m)) can be expressed as

−nH(P̂y|x(m)) =
∑
(a,b)

nP̂x(m)y(a, b) log P̂y|x(m)(b|a) (8)

= log
∏
(a,b)

[
P̂y|x(m)(b|a)

]nP̂x(m)y(a,b)

(9)

= log

n∏
i=1

P̂y|x(m)(yi|xm,i). (10)

Thus, we conclude that this decoder selects the message m̂ as

m̂ = argmax
m∈{1,...,M}

n∏
i=1

P̂y|x(m)(yi|xm,i). (11)

This form of the MMI decoder is more amenable for dual-
domain derivations.

Theorem 1. For a DMC W and rate R, under constant-
composition coding with QX , we have

p̄ mmi
e ≤̇ min

0≤ρ≤1
exp

(
−n
[
Eml

0 (QX , ρ)− ρR
])

, (12)

where

Eml
0 (QX , ρ)

= sup
r(.)

− log
∑
y

(∑
x

QX(x)W (y|x)
1

1+ρ er(x)−ϕr

)1+ρ

(13)

and ϕr =
∑

x QX(x)r(x).

Proof. We begin with the random coding union (RCU) bound,
presented in [6, Theorem 1], which states that for a generic
decoding metric q, we have

p̄ q
e

.
= E

[
min

{
1,M P

[
q(X̄,Y ) ≥ q(X,Y )

∣∣X,Y
]}]

, (14)

where p̄ q
e denotes the average error probability under the

decoding metric q. For the MMI decoder, we get

p̄ mmi
e

.
= E

[
min

{
1,M P

[
I(P̂X̄Y )

I(P̂XY )
≥ 1

∣∣X,Y

]}]
(15)

= E

[
min

{
1,M P

[
P̂Y |X̄(Y |X̄)

P̂Y |X(Y |X)
≥ 1

∣∣∣X,Y

]}]
.

(16)

Given that min{1, x} ≤ xρ for x ≥ 0 and ρ ∈ [0, 1], we can
upper bound the expression for any ρ ∈ [0, 1] as follows

p̄ mmi
e ≤ E

[
MρP

[∏n
i=1 P̂Y |X̄(Yi|X̄i)∏n
i=1 P̂Y |X(Yi|Xi)

≥ 1

∣∣∣∣X,Y

]ρ]
(17)

≤ E

Mρ

E
[∏n

i=1 P̂Y |X̄(Yi|X̄i)
∣∣Y ]∏n

i=1 P̂Y |X(Yi|Xi)

ρ , (18)

where in (18) we applied Markov’s inequality. Observe that,
unlike standard dual-domain derivations, no tilting parameter
s is introduced. For a given y, [4, Lemma 2.1] allows us
to rewrite the expectation in the numerator of (18) as if the
distribution were i.i.d. with QX , as follows

E
[
P̂y|X̄

(
y|X̄

)]
≤̇
∑

x̄∈T n(QX)

n∏
i=1

QX(x̄i)P̂y|x̄ (yi|x̄i) . (19)

Recall that QX = P̂x̄, and note that for a ∈ X and b ∈ Y ,
we have P̂x̄(a)P̂y|x̄(b|a) = P̂y(b)P̂x̄|y(a|b). Thus, the RHS
of (19) can be rewritten as

E

[
n∏

i=1

P̂y|X̄
(
yi|X̄i

)]

≤̇ P̂y(y)
∑

x̄∈T n(QX)

n∏
i=1

P̂x̄|y (x̄i|yi)
(20)

= P̂y(y)
∑
P̄X̄Y :

P̄X̄=QX ,P̄Y =P̂y

∑
x̄:(x̄,y)∈T n(P̄ )

n∏
i=1

P̄X̄|Y (x̄i|yi) (21)



.
= P̂y(y)

∑
P̄X̄Y :

P̄X̄=QX ,P̄Y =P̂y

1 (22)

.
= P̂y(y), (23)

where P̄X̄|Y in (21) is the conditional distribution of X̄ given
Y induced by the joint distribution P̄X̄Y . The 1 in (22)
appears because the product

∏n
i=1 P̄X̄|Y (x̄i|yi) simplifies to

exp(−nHP̄ (X̄|Y )), while the size of the set {x̄ : (x̄,y) ∈
T n(P̄ )} .

= exp(nHP̄ (X̄|Y )), and these terms cancel each
other. Substituting this result into (18), we obtain

p̄ mmi
e ≤̇ E

[
Mρ

( ∏n
i=1 P̂Y (Yi)∏n

i=1 P̂Y |X(Yi|Xi)

)ρ]
(24)

= E

[
Mρ

( ∏n
i=1 P̂X(Xi)∏n

i=1 P̂X|Y (Xi|Yi)

)ρ]
. (25)

For a given pair (x,y), the conditional type can be written as
n∏

i=1

P̂x|y(xi|yi) = sup
U

n∏
i=1

U(xi|yi). (26)

To see this, note that for any U ≫ P̂x|y ,

n∏
i=1

P̂x|y(xi|yi) =

(
n∏

i=1

U(xi|yi)

)(
n∏

i=1

P̂x|y(xi|yi)
U(xi|yi)

)
. (27)

Now, observe that the second term can be expressed as

n∏
i=1

P̂x|y(xi|yi)
U(xi|yi)

=
∏
(a,b)

[
P̂x|y(a|b)
U(a|b)

]nP̂xy(a,b)

(28)

= exp
(
nD(P̂x|y∥U |P̂y)

)
, (29)

where D(·|| · |·) denotes the conditional relative entropy, as
defined in [1, Eq. 2.4]. Hence, we have

n∏
i=1

P̂x|y(xi|yi) =

(
n∏

i=1

U(xi|yi)

)
enD(P̂x|y∥U |P̂y). (30)

Given that the relative entropy is always non-negative and (30)
holds for any U , we can take the supremum to obtain

P̂x|y(x|y) ≥ sup
U

n∏
i=1

U(xi|yi), (31)

with equality achieved when U = P̂x|y . Recall that P̂x = QX

under constant-composition coding. Thus,

p̄ mmi
e ≤̇ E

[
Mρ

( ∏n
i=1 QX(Xi)

supU
∏n

i=1 U(Xi|Yi)

)ρ]
(32)

≤̇ inf
U

E
[
enρR

( ∏n
i=1 QX(Xi)∏n
i=1 U(Xi|Yi)

)ρ]
, (33)

where the dot in (33) arises because M
.
= exp(nR). The upper

bound is obtained by moving the minimization outside the

expectation. To see this, observe that for any x̄ ∈ Xn, ȳ ∈ Yn,
and Ū , we have

inf
U

(
Qn(x̄)

Un(x̄|ȳ)

)ρ

≤
(

Qn(x̄)

Ūn(x̄|ȳ)

)ρ

. (34)

The result then follows by taking the expectation with respect
to (x̄, ȳ) and subsequently minimizing over Ū on the RHS.
Taking advantage of constant-composition coding, we simplify
the expectation as follows

E
[( ∏n

i=1 QX(Xi)∏n
i=1 U(Xi|Yi)

)ρ]
=
∑

x∈T n(QX)

1

|T n(QX)|
∑
y

n∏
i=1

W (yi|xi)

(
QX(xi)

U(xi|yi)

)ρ (35)

=
∑

x∈T n(QX)

1

|T n(QX)|

n∏
i=1

∑
y

W (y|xi)

(
QX(xi)

U(xi|y)

)ρ

(36)

=
∑

x∈T n(QX)

1

|T n(QX)|
∏
a∈X

[∑
y

W (y|a)
(
QX(a)

U(a|y)

)ρ
]nQX(a)

(37)

=
∏
x∈X

[∑
y

W (y|x)
(
QX(x)

U(x|y)

)ρ
]nQX(x)

, (38)

where (38) holds because the product term in (37) is identical
for all x ∈ T n(QX). Accordingly, we have for any ρ ∈ [0, 1],

p̄ mmi
e ≤̇ exp

(
−n
[
Emmi

0 (QX , ρ)− ρR
])

, (39)

where

Emmi
0 (QX , ρ)

= sup
U

−
∑
x

QX(x) log
∑
y

W (y|x)
(
QX(x)

U(x|y)

)ρ

. (40)

For any non-negative function f defined on X , we have
E[log f(X)] = infr(.) logE

[
f(X)

er(X)−ϕr

]
, where ϕr = E [r(X)]

[7, Section 2.4.2]. With this approach, the outer expectation in
(40) can be moved inside the logarithm, resulting in

Emmi
0 (QX , ρ)

= sup
U

sup
r(.)

− log
∑
(x,y)

QX(x)W (y|x)
(

QX(x)

U(x|y)er(x)−ϕr

)ρ

(41)

= sup
r(.)

− log inf
U

∑
(x,y)

QX(x)W (y|x)
(

QX(x)

U(x|y)er(x)−ϕr

)ρ

.

(42)

To solve the optimization over U in (42), we move the
minimization inside the summation, yielding

inf
U

∑
(x,y)

QX(x)W (y|x)
(

QX(x)

U(x|y)er(x)−ϕr

)ρ

≥
∑
y

inf
U(.|y)

∑
x

QX(x)W (y|x)
(

QX(x)

U(x|y)er(x)−ϕr

)ρ

.

(43)



The expression is convex in U , allowing us to apply [3,
Theorem 4.4.1]. This theorem guarantees that, for x ∈ X and
some λ, the optimal U⋆(.|y) satisfies

QX(x)W (y|x)
(

QX(x)

er(x)−ϕr

)ρ

U⋆(x|y)−(1+ρ) = λ, (44)

resulting in the optimal solution

U⋆(x|y) = QX(x)W (y|x)
1

1+ρ e
−ρ
1+ρ [r(x)−ϕr]∑

x̃ QX(x̃)W (y|x̃)
1

1+ρ e
−ρ
1+ρ [r(x̃)−ϕr]

. (45)

Note that U⋆ is indeed the solution to the optimization problem
in (41). Setting U = U⋆ in (41) provides a valid lower bound,
as U⋆ is potentially sub-optimal. However, as demonstrated,
U⋆ also satisfies the upper bound. Since the lower and upper
bounds are identical, this confirms that U⋆ is the optimal
solution. Thus, by substituting U⋆, we obtain

inf
U

∑
(x,y)

QX(x)W (y|x)
(

QX(x)

U(x|y)er(x)−ϕr

)ρ

=
∑
y

[∑
x

QX(x)W (y|x)
1

1+ρ e
−ρ
1+ρ [r(x)−ϕr]

]1+ρ

.

(46)

By redefining r(x) := −ρ
1+ρr(x), the optimization over r(.) re-

mains unchanged. Consequently, we can express Emmi
0 (QX , ρ)

as
Emmi

0 (QX , ρ)

= sup
r(.)

− log
∑
y

[∑
x

QX(x)W (y|x)
1

1+ρ er(x)−ϕr

]1+ρ

,

(47)

which is equal to Eml
0 (QX , ρ), as given in [8, Eq. (53)].

IV. JOINT SOURCE CHANNEL CODING

We now consider the transmission of non-equiprobable
messages with distribution P k(v) =

∏k
i=1 PV (vi), where

v = (v1, . . . , vk) ∈ Vk is the source message, and V is a finite
discrete alphabet. The source message set Vk is partitioned into
Nk disjoint subsets (or classes) A(i)

k , i = 1, . . . , Nk, such that⋃Nk

i=1 A
(i)
k = Vk, where Nk can grow sub-exponentially with

k. We assume that each class A(i)
k , i = 1, . . . , Nk includes

one or more full type classes. For each source message v in
A(i)

k , the codewords x(v) ∈ X n are generated independently
and uniformly from the type class T n(Qi), where the size
of the type class must satisfy |T n(Qi)| ≥ |A(i)

k | for all
i = 1, . . . , Nk. The work in [9, Theorem 1] derives the MAP
random coding error exponents for an arbitrary partition of
Vk and recovers Csiszár’s exponent [5]. We next show that
the exponent of [9, Theorem 1] can be achieved with the
generalized MMI decoder, introduced by Csiszár in [5]. Given
the channel output y, the decoder selects the source message
v̂ as follows

v̂ = argmax
v

I(P̂x(v)y)− tH(P̂v), (48)

where t ≜ k
n . Similarly to the MMI decoder in channel coding,

this decoder does not require knowledge of the source or
channel distribution. Following similar steps as in (5)-(11),
it can be shown that (48) is equivalent to

v̂ = argmax
v

(
k∏

ℓ=1

P̂v(vℓ)

)(
n∏

ℓ=1

P̂y|x(v)(yℓ|xv,ℓ)

)
. (49)

Theorem 2. For a given partition A(i)
k , i = 1, . . . , Nk,

and associated random-coding distributions Qi, the average
probability of error satisfies

p̄ mmi
e ≤̇

Nk∑
i=1

exp

(
− max
ρi∈[0,1]

{
nEml

0 (Qi, ρi)− E(i)
s (ρi, P

k)
})
(50)

where E
(i)
s (ρ, P k) ≜ log

(∑
v∈A(i)

k

P k(v)
1

1+ρ

)1+ρ

.

Proof. We begin with the extended RCU bound for joint
source-channel coding, given in Eq. 26 of [9], and adapt it
to the generalized MMI decoder as follows

p̄ mmi
e ≤

Nk∑
i=1

ε̄i, (51)

where

ε̄i =
∑

v∈A(i)
k

P k(v)
∑
(x,y)

P
(i)
X (x)Wn(y|x)

×min

{
1,

Nk∑
j=1

∑
v̄∈A(j)

k

∑
x̄:P̂v̄(v̄)P̂y|x̄(y|x̄)
≥P̂v(v)P̂y|x(y|x)

P
(j)
X (x̄)

}
,

(52)

and P
(i)
X (x) denotes the constant-composition ensemble dis-

tribution, as defined in (3) for Qi. Next, we use Markov’s
inequality, once again without applying tilting, to obtain∑

x̄:P̂v̄(v̄)P̂y|x̄(y|x̄)
≥P̂v(v)P̂y|x(y|x)

P
(j)
X (x̄) ≤

∑
x̄

P
(j)
X (x̄)

(
P̂v̄(v̄)P̂y|x̄(y|x̄)
P̂v(v)P̂y|x(y|x)

)
.

(53)

We can again follow similar steps as in (19)-(23), using [4,
Lemma 2.1], to obtain∑

x̄

P
(j)
X (x̄)P̂y|x̄(y|x̄) ≤̇ P̂y(y). (54)

Thus, we have

ε̄i ≤̇
∑

v∈A(i)
k

P k(v)
∑
(x,y)

P
(i)
X (x)Wn(y|x)

×min

{
1,

(
Nk∑
j=1

∑
v̄∈A(j)

k

P̂v̄(v̄)

)
P̂y(y)

P̂v(v)P̂y|x(y|x)

}
.

(55)



Let Λi denote the set of all possible types of source sequences
in A(i)

k (i.e., Λi ⊂ Pk(V)). Consequently, the summation in
the minimum function simplifies to

Nk∑
j=1

∑
v̄∈A(j)

k

P̂v̄(v̄) =

Nk∑
j=1

∑
P̄∈Λj

∑
v̄∈T k(P̄ )

P̂v̄(v̄) (56)

=

Nk∑
j=1

∑
P̄∈Λj

∑
v̄∈T k(P̄ )

exp(−kH(P̄ )) (57)

.
=

Nk∑
j=1

∑
P̄∈Λj

1 (58)

.
= 1, (59)

where the 1 in (58) arises from the fact that |T k(P̄ )| .
=

exp(kH(P̄ )), and the final dot-equality holds because the
number of possible types in A(j)

k and Nk both grow sub-
exponentially with k. Hence, similarly to (25) we have

ε̄i =
∑

v∈A(i)
k

P k(v)
∑
(x,y)

P
(i)
X (x)Wn(y|x)

×min

{
1,

P̂x(x)

P̂v(v)P̂x|y(x|y)

}
.

(60)

Observe that P̂x = Qi, and recall the inequality min{1, x} ≤
xρ for x ≥ 0 and ρ ∈ [0, 1]. Hence, for any ρi ∈ [0, 1],

ε̄i ≤̇
∑

v∈A(i)
k

P k(v)
∑

(x∈T n(Qi),y)

Wn(y|x)
|T n(Qi)|

(
Qn

i (x)

P̂v(v)P̂x|y(x|y)

)ρi

.

(61)

Recall the equivalent representation of P̂x|y(x|y) given in
(26). Substituting this representation, we can further upper
bound ε̄i as follows

ε̄i ≤̇

( ∑
v∈A(i)

k

P k(v)

P̂v(v)ρi

)

×

(
inf
U

∑
(x∈T n(Qi),y)

Wn(y|x)
|T n (Qi)|

(
Qn

i (x)

Un(x|y)

)ρi
)
.

(62)

Observe that the second term in (62) is identical to the
expression in (35), and thus,

ε̄i ≤̇

( ∑
v∈A(i)

k

P k(v)

P̂v(v)ρi

)
exp(−nEml

0 (Qi, ρi)). (63)

It remains to be shown that the first term in (63) is upper
bounded by exp

(
E

(i)
s (ρi, P

k)
)

. To this end, we have

∑
v∈A(i)

k

P k(v)

P̂v(v)ρi

=
∑
P̄∈Λi

∑
v∈T k(P̄ )

P k(v)

P̄ k(v)ρi
. (64)

Observe that for v ∈ T k(P̄ ), we have Pk(v)
P̄k(v)ρi

=

exp
(
k
∑

b∈V P̄ (b) log PV (b)
P̄ (b)ρi

)
, and

∣∣T k(P̄ )
∣∣ .
= exp(kH(P̄ )).

Consequently, (64) simplifies to∑
v∈A(i)

k

P k(v)

P̂v(v)ρi

.
=
∑
P̄∈Λi

exp

(
k
∑
b∈V

P̄ (b) log
PV (b)

P̄ (b)1+ρi

)
. (65)

The exponential term on the RHS of (65) can be rewritten as

exp

(
k
∑
b∈V

P̄ (b) log
PV (b)

P̄ (b)1+ρi

)

=

[
exp

(
k
∑
b∈V

P̄ (b) log
PV (b)

1
1+ρi

P̄ (b)

)]1+ρi
(66)

=

[ ∑
v∈T k(P̄ )

P k(v)
1

1+ρi

]1+ρi

. (67)

Substituting this back into (64), we have∑
v∈A(i)

k

P k(v)

P̂v(v)ρi

=
∑
P̄∈Λi

[ ∑
v∈T k(P̄ )

P k(v)
1

1+ρi

]1+ρi

(68)

≤

[ ∑
P̄∈Λi

∑
v∈T k(P̄ )

P k(v)
1

1+ρi

]1+ρi

(69)

=

[ ∑
v∈A(i)

k

P k(v)
1

1+ρi

]1+ρi

, (70)

where in (69), we used
∑

i a
r
i ≤ (

∑
i ai)

r for r ≥ 1 [3,
Problem 4.15.f]. By combining these results and minimizing
over ρi, we obtain

ε̄i ≤̇ exp

(
− max
ρi∈[0,1]

{
nEml

0 (Qi, ρi)− E(i)
s (ρi, P

k)
})

, (71)

thus concluding the proof.
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