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Abstract—We derive closed-form expressions of the generalized
mutual information (GMI) for the Gilbert-Elliott channel by
introducing memory in the decoding metric. We first study the
simple case of block memory and then propose a unifilar decoder
that explicitly tracks state memory. We show that the GMI
for both decoders exhibits a monotonic improvement with the
memory order, and that the rates achieved by the unifilar decoder
of a given memory order are always higher than those achieved
by the block decoder.

I. INTRODUCTION

In high-frequency-band communication and cellular tele-
phony, the transmitted signal arrives at the receiver via multiple
paths, each of a different intensity, at several times. Channel
memory effects need to be taken into account, and the as-
sumption of uncorrelated noise between successive channel
uses is no longer valid. A general framework for modeling
such channels with memory is the class of finite-state channels
(FSCs), in which the channel output depends on both the input
and an underlying channel state. FSCs provide a practical
and tractable way to model flat fading channels, intersymbol
interference (ISI) channels, and channels that exhibit both
fading and ISI [1].

If the transmitter and receiver have perfect channel state
information, the FSC capacity is the statistical average across
all states [1]. Without any information regarding the channel
state or its transition structure, the capacity is reduced to that
of an arbitrarily varying channel [2]. This paper explores the
intermediate scenario where the channel transition structure of
the FSC is known. Assuming the channel model meets some
mild technical conditions [1, Th. 4.6.3], the capacity of FSCs
is given by the multi-letter expression [1, Th. 4.6.4]

C = lim sup lI(X";Y") (1

n—oo an n
where X", Y™ are the input and output sequences of the
channel, and the optimization is over all choices of the input
distribution @ x~. No closed-form finite-letter characterization
exists, except for very specific cases. It was recently shown in
[3] that the FSC capacity is not a computable function. Even
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for many simple FSC models, the capacity remains an open
problem. In this paper, we study the Gilbert-Elliott channel
[4], [5], for which only a single-letter upper and lower bounds
are known [6]. The capacity can be simulated by the recursion
in e.g. [7].

Mismatched decoding is the setting in which the decoder, in-
stead of performing optimal maximum likelihood, maximizes a
given decoding metric (see e.g., [8]). While typically employed
to model channel uncertainty and low-complexity decoding,
mismatched decoding can also be employed as a means to
derive achievable rates by imposing relatively simple decoding
metrics when the real channel description is complex.

This work mainly considers the Gilbert-Elliott channel under
two types of decoders: block decoders and unifilar decoders.
We prove that the optimized generalized mutual information
(GMI) increases monotonically with the decoder memory for
both decoders. Furthermore, we show that a unifilar Markov
decoder with memory m achieves strictly better, or at least
equal, performance compared to a block (m + 1) decoder.
This improvement arises from the decoder’s ability to lever-
age temporal dependencies in the sequence, whereas block
decoders are constrained by fixed-length segmentation, leading
to suboptimal use of historical information.

Notation: Discrete scalar random variables are denoted
by capital letters, their realizations by respective lowercase
letters, and their alphabets by corresponding calligraphic let-
ters. The cardinality of a finite set X’ is denoted by |X].
We represent vectors of length n in alphabet X" by " =
(z1,22, - ,x,). For finite X, the probability mass function
(PMF) in X" is denoted by Px~ and the conditional PMF by
PY’!L‘X'H..

Information-theoretic quantities are denoted following the
usual conventions, namely entropy H(X) and conditional
entropy H(Y'|X). We represent the entropy rate as

1
H(X)= lim —H(X"). 2)
n—,oo M
The expectation operator is represented by E(-). All loga-
rithms are taken to the base 2 unless otherwise stated.

II. PRELIMINARIES
A. Gilbert-Elliott Channel

The Gilbert-Elliott channel is an elementary binary-input
binary-output FSC described by the two-state Markov chain



in Fig. 1. When the channel is in the good state, transmission
occurs over a binary symmetric channel (BSC) with crossover
probability J,. Similarly, when the channel is in the bad state,
transmission occurs over a BSC with crossover probability
0 > 0. In other words, the channel transition law W (y|x, s)
is determined by the BSC corresponding to the state. This
channel is known to be indecomposable, i.e., the effect of the
initial state dies away with time, and non-anticipatory, i.e., the
current output is statistically independent of all future inputs
[1, Sec. 5.9]. We denote the steady-state distribution of the

Markov chain by [mg, T,] = [ﬁ, ﬁ]
b
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Fig. 1. Gilbert-Elliott channel model.

We consider coded communication over the Gilbert-Elliott
channel and denote the codebook C = {z"(1),...,2"(M)}
as the set of all M codewords of length n, that is, " (i) €
X™. The rate of the code is defined as R = %log M. The
corresponding channel output is denoted by y™ € V™. Since
the underlying channels are BSCs, the capacity is attained by
the equiprobable input distribution. Since the Gilbert-Elliott
channel can be interpreted as a binary additive-noise channel,
its capacity is determined by the entropy rate of the noise
process Z", namely

C=1-Hy(2). 3)

The capacity of the Gilbert-Elliott channel has been studied in
several works. Mushkin and Bar-David [6] derived upper and
lower bounds, but no single-letter expressions of the capacity
have been derived — one can only simulate it (see e.g. [7]).
The main reason is that the noise process Z™ is described
by a hidden Markov model; single-letter expressions for the
entropy rate of hidden Markov models are not available.

B. Mismatched Decoding Framework

Mismatched decoding is the setting by which the decoder,
instead of performing optimal maximum likelihood, maximizes
a given decoding metric

(@™ (1), y")- “)

While typically employed to model channel uncertainty and
low-complexity decoding, mismatched decoding can also be
employed as a means to derive achievable rates by imposing
relatively simple decoding metrics when the real channel
description is complex.

m=argmaX;co . a4

The generalized mutual information (GMI) is a simple
achievable rate, whose multi-letter version can be expressed
as (see e.g. [8])

fom =sup I B ot sy |
For a memoryless decoding metric of the form
¢"(z"y") = [ [ alzi v:), 6)

=1

it is established in [9] that selecting g(x;,y;) to emulate a
BSC with crossover probability 0* = 7,0, + 761, maximizes
the GMI for the Gilbert-Elliott channel. The resulting maximal
GMI is given by the single-letter expression

Igmi =1- h2 (6*)7 (7)

where ho(p) = —plogyp — (1 — p)logy(1l — p) denotes
the binary entropy function. This expression recovers the
lower bound by Mushkin and Bar-David [6] using mismatched
decoding.

The channel’s inherent infinite memory makes the memo-
ryless decoding metric overly restrictive, as it ignores tem-
poral dependencies introduced by the channel. To reconcile
this limitation while retaining tractability, in this paper, we
develop two ways of adding memory to the decoding metric
that lend themselves to a single-letter characterization of the
corresponding GMLI. In both cases, we observe that when the
memory order of the decoding metric increases, both methods
monotonically approach the capacity of the channel.

III. BLOCK DECODING METRICS

In this section, we develop block-memory, i.e., a decoding
metric in which memorylessness is enforced only across blocks
(i.e., dependencies are localized within fixed-length segments),
approximating the channel’s infinite-memory behavior without
incurring the full computational complexity of maximum like-
lihood decoding. In the following, for simplicity, we use a
block decoder with memory 2 as an illustrative example.

A block-2 decoding metric can be factorized as

n

q (", y") = H (i1, Yi1, T, Yi)- ®)
i=1
€

i even

In other words, the block-2 decoder’s operation induces an
equivalent quaternary channel used for decoding. In this work,
we consider a quaternary symmetric channel (QSC) model,
with transition matrix

doo do1 O10 011

r _ %1 do0 011 010
QsC 010 611 doo do1
d11 910 do1 oo

€))

where we have assumed the QSC employed at the decoder is
memoryless and dgg + do1 + d10 + 11 = 1.



Since optimizing ¢%(z;_1, yi_1, T, y;)" is equivalent to set-
ting 7 = 1 and optimizing ¢*(x;_1, yi_1, T4, y;), We substitute

(8) into (5) to obtain
1
Toni = Jlim 5 3 PG 22 Qe
q (xiflyyiflamiuyi)

log - - — -
Z > Q(Tr—1,71)q* (Tr—1, Yi—1, Tk Yi)
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=3 Zﬁ(s,s’)lgmi(s, s') (15)
where
Tgmmi ZQ ZW ylz, )W (y'la’, ")
« log q (x y,2',y') (16)

Eiiz'@( )Q(E) ¢ (2,y, 7', y")
(11) follows from the distributive law of multiplication and
the fact that the term inside the logarithm only selects the
corresponding joint probability, while the rest will sum up to
one; ngy is the number of transitions from state s to state s
in a given state sequence s™; 7" , represents the set of state
sequences with transition countsb;Lss/ € {ngg, Ngb, Nbg, Mbb }3
and the last equality follows from the the stationarity of the
chain.

For the Gilbert-Elliott channel with decoding metric (9)
under equiprobable input distribution, the GMI in (15) satisfies

1
Igmi = 14 3 Z P(z1,22)logds, -,

21,22

a7

P(z1,22)1og P(z1, 22) (18)

where ¢, ., are the parameters of the QSC used for decoding
and where the inequality follows from the non-negativity of
KL divergence, i.e., the cross entropy bound. This suggests
that the optimal decoding parameters are

0% ., = P(z1,20) = Z 7w (s1)P(s2]s1)P(21|81)P(22]82).
(19)

Therefore, we conclude that the best GMI rate under a block
decoder of memory order m = 2 satisfies

1

Iblock —-1— *H(ZQ)
2

gmi

(20)

The preceding analysis naturally extends to decoders with
arbitrary memory order m, yielding Theorem 1.

Theorem 1. The optimal GMI of the Gilbert-Elliott channel
using a mismatched block decoder with memory order m is

Iblock( ) _

1
gmi 1 - EH(Zm) 2D

where H(Z™) is the joint steady-state noise entropy.

block
I gmi

Proposition 1. (m) is non-decreasing with m.

Proof. For a stationary stochastic noise process Z™, the nor-
. VAT . . .
malized entropy rate HZT) i non-increasing in m. O

Proposition 2. The channel capacity is recovered by choosing
an infinitely long block, i.e.,

1= lim “H(Z™) = 1— Ho(Z).

lim IblOCk(m) =
m—oo m
(22)

mi
m—»0o0 g

IV. UNIFILAR DECODING METRICS

In the previous section, we studied block decoders, which
partially account for memory effects compared to strictly mem-
oryless decoders. However, since the channel itself possesses
infinite memory, the assumption of memorylessness across
blocks remains restrictive. To address this limitation, we now
turn to unifilar decoders, which explicitly incorporate state-
dependent decoding.

Specifically, we consider a memory-1 unifilar decoder with
decoding states {0, 1}, where the next state s;41 is determinis-
tic given the current input x;, output y;, and state s;. Namely,
the state update rule is

0
S =
+1 1

Each state s is associated with a BSC with crossover prob-
ability ds, as summarized in Fig. 2. While this framework
generalizes to arbitrary order memories, we focus here on the
memory-1 case for clarity.

it z; ®y; =0,

) (23)
otherwise.

T, Dy =1
nou=0c@_ {Douen-
T; ®y; =0

Fig. 2. Unifilar decoder with memory-1.



Given the state-dependent decoding process described
above, we formulate the decoding metric for the memory-1
unifilar decoder as

n
q"(z",y") = H (@i, Yilwi-1,Yi-1), (24)
i=1
where (2o, yo) gives the initial decoding state and is assumed

to be known and fixed. Choosing 7 = 1 and equiprobable
inputs, we can express the denominator of the GMI as

> Q@ @y

1
= o 2 q(i‘l,mlxo,yo)---ZQ(in,anJ’:n_hyn_l)
1 Tn
(25)
1
_1 26
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where the last equality follows from the fact that for any fixed
decoding state s, > .. q(Z,y|s) = 1 regardless of the value
of y. Substituting this expression for the denominator into (5)
yields:

fou =14 i LS P S S 0 )
zn oy
x Zlogq Tis Yilwi-1, Yi-1) 27
i1
1 n
=1+ lim — P i1, T
N yiflzyi
W (yi—1lwi—1, 5i—1)W (yilws, si) log q(@i, yilwi—1,yi—1)
(28)
=1+ Z m(s1, S2) Z Q(z1,22)W (1|1, 51) %
iy
W (yz2|z2, s2) log q(x2, y2|x1, Y1) (29)
=1+ Z P(z1,22)log q(z2]|21) (30)
21,22
<14 > P(z1,2)log P(z|x) (3D
Z1,22

where (28) follows from an analogous derivation to that used in
(11), (29) results again from the stationarity of Markov chains,
(30) is obtained by rewriting in terms of noise symbols and
marginalizing over the states, and the last inequality can be
shown using the non-negativity of the KL divergence.

This implies that the optimal decoding parameters are given
by the conditional stationary transition probabilities of the
noise process, i.e., ¢(22]21) = P(z2|z1). In other words,

56 :PZ2\Z1(1|O>
5? :PZ2\21(1|1)'

Thus, the maximum GMI rate under a unifilar decoder with
memory order m = 1 is given by

H(Z5|Zy).

(32)

unifilar __
L™ =1

(33)

The preceeding analysis applies to any finite memory m, as
seen in Theorem 2.

Theorem 2. The optimal GMI of the Gilbert-Elliott channel
using a mismatched unifilar decoder with memory m is

Iumﬁlar( ) _

emi 1—H(Zp41|Z™) (34)

where H(Z,+1|Z™) is the conditional steady-state noise
entropy.

Proposition 3. Igfrlliiﬁlar(m) is non-decreasing with m.

Proof. For a stationary stochastic process Z™*1!, the condi-
tional entropy H(Z,,+1|Z™) is non-increasing in m. O

Proposition 4. The optimal GMI under a memory-m unifilar
decoder is no less than that under a block-(m + 1) decoder.

Proof. For a stationary stochastic process Z™*1, it is known
m+1
that H(Zp41]2™) < 222 1. O

Combining Proposition 4 with the limiting behavior of block
decoders established in Proposition 2 yields the following
result.

Proposition 5. The channel capacity is recovered by choosing
a unifilar decoder with infinite memory, i.e.,

dim L (m) =1 lim H(Zpsa|2™) (35)
=1-H(2). (36)

V. NUMERICAL RESULTS

We now compare the GMI achievable by block decoders and
unifilar decoders for a Gilbert-Elliott channel with parameters
b =201 g = 03, 0g = 0.1 and 6, = 0.4, as shown
in Fig. 3. The black line depicts the simulated capacity
obtained via the coin-tossing method [7] with a blocklength
of n = 108. Optimal GMIs for block and unifilar decoders
appear as blue and magenta curves, respectively. The shaded
green and red regions highlight rates within 0.5% and 0.1% of
the simulated capacity, providing visual quantification of the
decoders’ proximity to the fundamental limit. We observe that
both decoders exhibit monotonic convergence with increasing
m, though the unifilar decoder consistently achieves higher
rates due to its ability to exploit the state memory, as stated
in Proposition 4.

We also examine a more extreme channel scenario with pa-
rameters b = 0.01, g = 0.02, §, = 0.05, o, = 0.4, as shown
in Fig. 4. These parameters induce stronger channel memory,
evidenced by the more persistent transition probabilities. As
expected, the unifilar decoder again outperforms the block de-
coder across all m, though convergence is significantly slower,
which is a direct consequence of the channel’s more extreme
memory effects. This behavior aligns with our theoretical
predictions, as the increased autocorrelation in channel states
requires longer observation windows to reliably estimate the
underlying Markov structure of the channel state transitions.
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